EML - Bug #1132

fix access control rule ambiguities
08/15/2003 10:06 AM - Matt Jones

Status: Resolved Start date: 08/15/2003
Priority: Immediate Due date:

Assignee: Matt Jones % Done: 0%
Category: eml - general bugs Estimated time: 0.00 hour
Target version: EML2.1.0 Spent time: 0.00 hour
Bugzilla-ld: 1132

Description

We found some issues that need to be discussed regarding access control in the
EML2 specification. We have run into major problems while trying to implement
the specified access control procedures for Metacat and suspect that these
problems are not fixable without a change in the EML2 access control
specification. Though we are having these problems within Metacat, we believe
them to be general to any system that is trying to be EML2 compliant.

In EML2 there are two possible places where a processor may encounter access
control: one is at the resource level and the other is at the additionalMetadata

level. According to the EML spec, resource level access control applies to the
whole document and additionalMetadata rules apply to a specific subtree for

finer grained access control of EML subtrees. This allows one to have a general
access policy and then make specific exceptions or changes for particular subtrees.

The problems arise when a processor must remove a controlled subtree and
deliver it to the user. Once the user changes the document and

resubmits it, the subtree that was removed must be put back in its valid

and correct location.

1) Take this document for instance:
<a>

b

<d>d</d>

If a user has permission to write to the whole document (permission
comes from top level access control) and doesn't have permission to read
subtree d (restriction comes from addtionalmetadata access control) when
he tries to download the document he will get part of the document like:
<a>

b

The user adds the elements ¢ and e to the document.
<a>

b

<Cc>c</C>

<e>e</e>

Once the document is submitted back to the processor, the processor must
figure out that element d (that was removed before) must fit in between ¢
and e like so:

<a>

b

<Cc>c</c>

<d>d</d>

<e>e</e>

This may seem simple, but first of all, the only way to know where d is

07/06/2022

1/8

supposed to go when you remove it is to store its parent id and its most
immediate sibling(s) id(s). In this case d's parent is the same (a) but

in the original document b was it's most immediate sibling. Ifdis

inserted below b, the document becomes invalid. The only way to possibly
know where d is allowed to be reinserted is to parse the schema which
could still fail because element d could be legally allowed in many

different locations (ie, it is not necessarily deterministic wrt node placement).

2) Nested subtrees also present a problem.
<aid="100">

<C id="200">c</c>

<d>d</d>

An access module in additionalMetadata could specify that a user has read access
to ¢ but not a. If the processor simply returns ¢ but not a or sub-elements

(besides c¢) of a, the resulting document makes no sense. We need some sort of
cascade rule that says that once read has been taken away for a node, none of

its children can be made 'readable’.

3) Previously we stated that there are two palaces for access information to

exist. This is actually not quite correct. In EML2 each of the four resource

level modules (dataset, software, citation and protocol) have their own embedded
access module. Even though a document has only one resource level module, the
other resource level modules are embedded in each other. For example, you can
have a citation within a dataset. That citation has its own access module. We
have not defined in the EML spec how that is to be handled by a processor.
Should the top-level resource access description take precedence? Probably.
Should the lower level elements be ignored, or used in a manner similar to
additionalMetadata? If the latter, to what do they apply, themselves, or their
parent resource (unlike additionalMetadata, there is no describes element here

to clarify the situtation)?

Proposed solution:

Changing EML at this late date is hugely problematic. We feel that we should
maintain our commitment to make changes in EML backwards compatible (ie, EML
2.0.0 docs would be valid 2.0.1 docs). However, we feel that this is an

important bug that compromises the usefulness of EML, and so fixing it now is

the right thing to do. Nevertheless, we should minimize the disruptiveness of

the change by 1) trying not to change the schema structure, and 2) redefining
semantics of access control in a more tractable way.

We propose to alter EML to allow only two levels of access control. The first
would be document wide control, accomplished by a new "access" element on the
root "eml" document. The second would be data control for specific data files,
accomplished by an optional "access" element in the physical distribution module
that applies to the data object being described. We should remove access from
the eml-resource module (now that it is in the eml module itself), although this
would be an incompatible schema change. Alternatively we could simply define in
the spec that access elements on the "resource” module are to be ignored.
Restricting access control to the metadata and data respectively would greatly
simplify the processing of EML, although it would limit the granularity of

access control within the EML document.

Here's a fragment that shows what this new model might look like:

<eml>

<access>...</access> <-- defines overall access to
all metadata

<dataset>

<access>...</access> <-- this is ignored

<dataTable>

07/06/2022 2/8

<physical>

<distribution>
<access>...</access> <-- defines access to the data object
in inline, online, or offline
elements (ie, not the metadata
itself, just the data)
<inline>...</inline>
</distribution>

</physical>

</dataTable>

</dataset>

</eml>

Of course, these changes would make an access element that is present in the
schema (under dataset, for example) be ignored. Which is certainly confusing.
We have to choose the lesser of two evils: 1) keep it and ignore it, which is
confusing but allows schema compatibility with 2.0.0, or 2) delete it, which is
clearer but makes all 2.0.0 documents that use it invalid and must be
transformed to become valid EML 2.0.1 documents. This is a tough choice.

We also need to clarify how to interpret the values found in the 'permission’
element, in that we should make it clear that 'changePermission’ permission is
needed to change an access block, not just 'write' permission. Currently the
values we have (read, write, changePermission, all) are only tersely defined.

Comments or suggestions are welcome!
Jing, Chad, Matt, Dan, and Chris

Related issues:

Blocked by Metacat - Bug #968: Access control for eml2 documents Resolved 01/23/2003
Blocked by Metacat - Bug #1674: Access control for eml-2.1.0 documents Resolved 09/10/2004
Blocked by EML - Bug #3508: create a stylesheet for EML2.0.x to EML 2.1.0 New 10/06/2008
History

#1 - 05/10/2004 03:22 PM - Saurabh Garg

Notes taken based on the conversation on 6th May 2004:

1. Discussion on how Access should be handled in Metacat while reading eml 2.0.0
In eml 2.0.0 Access can be specified in following places.

/leml/dataset/access

/leml/citation/access

/leml/software/access

/leml/protocol/access

//leml/additionalMetadata

Permissions in //eml/dataset/access will be applied to all the metadata and by
default to the data. Any permissions specified in //eml/citation/access,
/feml/software/access and //eml/protocol/access are ignored. So all the
metadata has same permissions overall. However, access rules can still be
specified for any data attached to the metadata. This can be done in following
manner:

Define a reference id in the <distribution> for which you want to define the
access control. e.g.

<distribution id="xxyyzz">

</distribution>

To define the access rule for the above distribution, use
/leml/additionalMetadata is following way:
<additionalMetadata>

<describes>

XXyyzz

</describes>

<access>

<access>
</additionalMetadata>

07/06/2022

3/8

If additioncalMetadata describes as id which is not defined in the current eml
document, then that additioncalMetadata is ignored.

If the id is defined in the current eml document, but is not in distribution

tag, then also that additioncalMetadata is ignored.

If a distribution tag contains reference id but there is no additional Metadata
entry for that reference id, then the rules specified in //eml/dataset/access
are applied to this distribution.

2. Discussion on how Access should be handled in Metacat while reading eml 2.1.0
In eml 2.1.0 Access can be specified in following places.

/leml/access

/leml/..../distribution/access

Permissions in //eml/access will be applied to all the metadata and by default

to the data. So all the metadata has same permissions overall. However, access
rules can still be specified for any data attached to the metadata. This can be
done using the /access that will now be added to the distribution tag. e.g.
<distribution>

<access>

<access>
</distribution>

If no access is specified in distribution then //eml/access rules are applied.

#2 - 06/25/2004 10:49 AM - Saurabh Garg

Correction in the last comment. Any permissions specified
in //eml/citation/access, //eml/software/access and //eml/protocol/access are
not ignored. Hence we consider access in 2.0.1 in following places:

/leml/dataset/access

/leml/citation/access

/leml/software/access

/leml/protocol/access

/leml/additionalMetadata (only for distribution element)

#3 - 06/25/2004 11:29 AM - Matt Jones

Actually, we should only consider the eml root element, so in EML 2.0.1 the only
places for access would be:

/eml/dataset/access

/eml/citation/access

/eml/software/access

/eml/protocol/access

/eml/additionalMetadata (only for distribution element)

#4 - 06/25/2004 11:56 AM - Saurabh Garg

As both eml 2.0.1 and 2.1.0, only distribution ids will be referenced from
access, | was wondering if it is possible to change/add a new type of id in
distribution and only those kind of ids could be refered from data access. Any
views on this?

#5 - 06/28/2004 05:22 PM - Jing Tao

I am thinking if we can get rid of reference in "access" module in eml2.1.0.
In eml2.1.0, the document for access will look like(The element name maybe wrong)
<eml><access>....</access>

<dataAccess>

<dataid>100</dataid>

<dataid>200</dataid>

<access>......</access>

</dataAccess>

<dataAccess>

<dataid>300</dataid>

<dataid>400</dataid>

<access>......</access>

</dataAccess>

</eml>

If the top level access module is a refernce to the access module in first

dataAccess, that means they have same access control. And this is a equivalent
access rules without reference:

07/06/2022 4/8

<eml><access>real rules from access module from first dataAccess</access>.
<dataAccess>

<dataid>300</dataid>

<dataid>400</dataid>

<access>......</access>

</dataAccess>

<eml>

If the access module in first dataAccess is a reference to top level access. It
makes no sense because the access rules in first dataAccess doesn't give more
rules for distribution than top access rule. The equivalent rules can be:
eml><access>...</access>.

<dataAccess>

<dataid>300</dataid>

<dataid>400</dataid>

<access>......</access>

</dataAccess>

<eml>

If the access module in frist dataAccess is a refernce to second dataAccess, we
can revise the rules to:
eml><access>...</access>.
<dataAccess>
<dataid>100</dataid>
<dataid>200</dataid>
<dataid>300</dataid>
<dataid>400</dataid>
<access>......</access>
</dataAccess>

<eml>

So without reference, we still can make access module reusable(like the above
description). And if we get rid of reference, it will make implementation simpler.

Any comments and suggestions are appreciated.

#6 - 07/09/2004 11:42 AM - Saurabh Garg

An issue that came up during implementation of access rules in metacat based on
eml 2.0.1.

If a user is given read/write permission for inline data but no read/write
permission for metadata, what should be sent back when he requests the eml|
document. So assuming we have the following eml document.

<eml>
<dataset> <- User NOT given permission to access

<inline>first</inline> <- User given permission to access
<inline>second</inline> <- User given permission to access

<inline>third</inline> <- User given permission to access
</dataset>
</eml>

So when the user tries to read the document, should metacat:
1. Reject the request

2. Send back inline data as following:

first

second

third

or maybe:

<inline>first</inline>

<inline>second</inline>

<inline>third</inline>

Second issue, when he tries to write back to the document, how should the data
be parsed. For metacat to be able to write, there should be a defined schema

for parsing and identifying different inline datas.

Another issue, once data is updated, the metadata would also need to be updated
with new identifiers for data. But this cannot happen as user doesnt have write
access for metadata. Hence the problem.

07/06/2022

5/8

#7 - 07/15/2004 11:23 AM - David Blankman

It seems to me that read access to <inline> without read access to general

metadata should not be allowed, Of what use is the ability to download data

without being able to access (read) the metadata. The same thing is true for

write aceess to <inline>. While it is possble that a change in data might not

require a change in the metadata, how could someone make a change to an embedded
portion or the metadata in isolation, that is, without having write access to

the overall eml document.

| would suggest that <inline> could be more retrictive than other parts of the
metadata, but not the reverse. That is, it is certainly possible that someone
would want to grant broader access to overall metadata than to the data itself.

#8 - 09/02/2004 09:38 AM - Matt Jones

Changing QA contact to the list for all current EML bugs so that people can
track what is happening.

#9 - 08/28/2008 04:51 PM - Margaret O'Brien

Text of a recent message on eml-dev, also here. This is a model that Chris and | came up with recently, for simplifying the access tree in EML.

In this model, the <access> tree appears only at the top level, and no longer under dataset, citation, software and protocol. The AccessRuleType
now has a 0..many child, <describes>, for holding the id of the node that the rule applies to. If the <describes> is absent, then the rule applies to the
whole document. An instance would look like this:

<emlé>
<access authSystem="knb" order="allowFirst">
<allow>
&1lt;describess>table.1.1&1t; /describessagt;
<principal ... >
<permission ...>
< /allowsgt;
<denyé>
<describes>table.2.1&1t; /describes>
<principal ... >
<permission ...>
< /deny>
< /access>
<dataseté>
...dataset markup...
&1lt; /datasetsgt;
&1lt; /emlé>

We should encourage use of the order attribute (should it be required?) so that authors will be fully aware of the the rules they create. Rules should
be applied in the order they appear (after what is dictated by the order attribute). Presumably, if no order attribute is included, then the rules are
applied as they appear. Keeping the access tree in one area at the top of the document makes maintenance simpler, and the <describes> element
acts as it does under <additionalMetadata>.

It would have to be decided if access rules should still be allowed in <additionalMetadata>. These could be 1) not recognized as EML access trees
since node-level control can be described in eml/access, or 2) discouraged for the same reason, but applied, or 3) allowed and applied after the
eml/access rules.

The model itself doesn't catch conflicting access rules, but it does simplify descriptions, making it easier for authors to see potential hang-ups. One
way to control some basic conflicts might be to embed a rule-based schema, like Schematron. Conflict detection could also be added to the
eml-parser.

Since the access tree is only available at the <eml> level, then this would end the use of dataset, citation, etc as root level elements for some
purposes (e.g metacat) -- since metacat's default behavior is to allow access only to the logged-in owner if no access tree is present. In order to
specify that a doc was publicly-readable, an author would have to wrap the dataset in <eml>...</eml> to include those access instructions.

Access is a major issue, and it would be good to get some discussion going. Here, we've only addressed simplifying the location of the access tree,
it's another whole issue to deal with conflicts. It's always been slated for 2.1, but we may need to discuss that, too.

thanks -
Margaret and Chris

#10 - 08/28/2008 06:06 PM - Matt Jones

This solution, although nicely consolidated, fails to address the major problem that originally caused us such trouble and triggered the access control
changes in the first place. Basically, the use of references to define access restrictions on arbitrary subtrees creates massive complexity when trying
to figure out how people that have partial read and partial write capabilities on a document could succeed in modifying a document. | don't think using
references to arbitrary subtrees is a viable solution, for the same reasons outlined at the start of this bug report. So, | still think the best solution is the
one we proposed earlier in this thread:

07/06/2022 6/8

<eml>

<access>...</access> <-- defines overall access to
all metadata

<dataset>

<dataTable>

<physical>

<distribution>
<access>...</access> <-- defines access to the data object
in inline, online, or offline
elements (ie, not the metadata
itself, just the data)
<inline>...</inline>
</distribution>

</physical>

</dataTable>

</dataset>

</eml>

This uses a top-level eml/access element for defining access to the whole metadata document, and it allows entity-specific access blocks in the
distribution element for specifying rules for handling specific data entities. This does not allow access constraints on arbitrary subtrees, and therefore
is tractable from an implementation perspective. Plus, it is really just setting separate ACLs for the metadata and data files, which is manageable in
our current access table because each of these has its own docid.

Note that any access blocks in additionalMetadata would now be ignored, plus there is no longer an access element as a child of the eml-dataset
module (or any other eml-resource extensions) because these rules are specified at a higher level in the /eml/access element.

This approach represents an incompatible schema change from EML 2.0.1 that would require document conversion to create valid instance of 2.1.0,
but | think it is worth it given the gains in simplicity and clarity.

#11 - 08/29/2008 11:00 AM - Margaret O'Brien
Putting access control in only 2 areas will cover >90% of EML's access needs. There are other nodes that people have wanted to obfuscated
somehow, but usually there are other methods of accomplishing this.

| am looking at the distribution and physical types, and have some discussion points to bring up there which don't concern access, and so will start a
new bug!

#12 - 08/29/2008 03:21 PM - Margaret O'Brien

Code that bug #3480, comment2 is refering to. Access trees could be optionally included in any distribution element of this type. The <access>
element follows the base type (res:DistributionType) as is required by schema language when creating derived types.

<xs:complexType name="PhysicalDistributionType">
<xs:complexContent>

<xs:extension base="res:DistributionType">

<xs:sequence>

<xs:element name="access" type="acc:AccessType" minOccurs="0"/>
</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

#13 - 11/06/2008 10:12 AM - Margaret O'Brien

fixed, long ago, but documentation of the fixed types is still to be done, see bug #3599

#14 - 11/13/2008 05:09 PM - Margaret O'Brien

The physicalDistributionType should have looked like this (below), so that if the references element is used, it is the only child of <distribution>. |
wrongly used the sequence model, which meant that <references> could have had an <access> sibling. This has been checked into cvs as rev 1.75

<xs:complexType name="PhysicalDistributionType">
<xs:annotation>

<xs:appinfo>

<doc:tooltip>this type specifically for physical connections.</doc:tooltip>
</xs:appinfo>

</xs:annotation>

<xs:choice>

<xs:sequence>

<xs:choice>

<xs:element name="online" type="PhysicalOnlineType"/>
<xs:element name="offline" type="res:OfflineType"/>
<xs:element name="inline" type="res:InlineType"/>

07/06/2022 7/8

https://projects.ecoinformatics.org/ecoinfo/issues/3480
https://projects.ecoinformatics.org/ecoinfo/issues/3599

</xs:choice>

<xs:element name="access" type="acc:AccessType" minOccurs="0"/>

</xs:sequence>

<xs:group ref="res:ReferencesGroup"/>

</xs:choice>

<xs:attribute name="id" type="res:IDType" use="optional"/>

<xs:attribute name="system" type="res:SystemType" use="optional"/>

<xs:attribute name="scope" type="res:ScopeType" use="optional" default="document"/>
</xs:complexType>

#16 - 03/27/2013 02:16 PM - Redmine Admin
Original Bugzilla ID was 1132

Files

eml_with_access_proposed.png 8.71 KB 08/28/2008 Margaret O'Brien
new_physical_distribution_type.png 6.64 KB 08/29/2008 Margaret O'Brien
transformation_access_additionalMetadata.doc 35 KB 12/03/2008 Margaret O'Brien

07/06/2022

8/8

http://www.tcpdf.org

