Metacat - Bug #1879

Metacat Performance: Summary
01/18/2005 01:42 PM - Saurabh Garg

Status: New Start date: 01/18/2005
Priority: Immediate Due date:

Assignee: dJing Tao % Done: 0%
Category: metacat Estimated time: 0.00 hour
Target version: Unspecified Spent time: 0.00 hour
Bugzilla-ld: 1879

Description

These are notes based on the changes | did in Metacat source for improving the
performance. | was not able to make the below given changes due to lack of time
and because these changes would require a more thorough testing.

1. xml_index is a large table and most of the time we are searching for paths
which are needed by the web interface and Morpho for displaying the results. So
it might be a good idea to create a seperate table similar to xml_index table
which has only got some predefined paths in it. For current knb skin and morpho
this table on would have about 1/200th the number of records that xml_index has
right now. The code that would need to be modified would include both insertion
and deletion of documents.

2. For searching data in particular given paths (e.g. geographic query) the
current query uses both xml_index and xml_nodes. This can be improved by just
using xml_index table which has nodedata in it. But there is a lot of repetition

of data in xml_index table. So it has to be tested and checked if this would

result in better performance or otherwise. This would require rewriting
QueryTerm.java.

Related issues:

Blocks Metacat - Bug #2157: Metacat Performance: Optimize Postgres and Tomcat... Resolved 07/13/2005
Blocks Metacat - Bug #2155: Metacat Performace: Rewrite the xml_nodes queries In Progress 07/13/2005
Blocks Metacat - Bug #2153: Metacat Performace: Add/drop indices on key columns Resolved 07/13/2005
Blocks Metacat - Bug #2557: Metacat Performace: Rewrite the xml_access part o... Resolved 09/28/2006
Blocks Metacat - Bug #2175: Metacat Performace: Upgrading hardware setup Resolved 09/05/2005
History

#1 - 04/08/2005 08:43 AM - Saurabh Garg

Set of changes made in regards to performance for release 1.5:

e Performance impovement done in searching of datasets. A part of the search
time was taken up because of generation of resultset after the search had be
done. So this was the sequence of events in earlier metacat
1) Search for the given text
2) A list of docids generated
3) For each of the docids
3a) Use xml_index and xml_nodes table to generate the string descibing
the document including the returnfields requested in the search
4) Add all the strings from step 3a to send back the resultant document.
Here a decent amount
of time was being taken by step 3a. The algorithm is
now modified by addition of two tables xml_queryresult and xml_returnfields
and a user defined parameter xml_returnfield_count. The new algorithm works
as follows
1) Search for the given text
2) A list of docids generated
3) For the given set of return fields generate a unique string and check
if that string exists in xml_returnfields
3a) If string does not exist in xml_returnfield, then enter a new
record usage_count as 1 and returnfield_string as the unique string
generated above.

04/17/2024

1/2

3b) Else if the string exists, increment usage_count

4) Given the docids from step 2 and the id of the returnfield record from
step 3, query for any docids that already exist in xml_queryresult.

For the docids that do exist, get the queryresult_string.

5) For rest of the docids from step2 which were not found in step 4, do
the following for each of the documents:

5a) Use xml_index and xml_nodes table to generate the string descibing
the document including the returnfields requested in the search

5b) If usage_count of the record from step is more than
xml_returnfield_count set in metacat.properties, then store the

string in xml_queryresult as a record which has the returnfield_id
representing the set of returnfields, docid representing the

document and the string as queryresult_string.

6) Add all the strings from step 4 and step 5a to send back the resultant
document

So the results from step 3a in previous algorithm are effectively cached
and hence same computation is not done again and again for each search.
When a document is deleted, all the entries for that document in
xml_queryresult table are also deleted. When a document is updated, all
the entries for that document in xml_queryresult table are deleted. This
works fine because those entries will be generated and cached again the
next time the document is part of a search is requested.

Performance impovement done for % search. Now % search doesnt include
searching the xml_nodes table.

#2 - 09/28/2006 08:40 AM - Matt Jones

The growth of Metacat's document store has eroded the performance gains we made previously. We are now back to having simple queries take ~25
seconds or more. Of this, it appears that the SQL query is taking about 12 secs, and the XSLT transform and download to client is taking about 13
secs. Additional performance improvements can be made. Here are some ideas:

1) Rewrite the SQL to eliminate unneccesary subqueries. This seems to have the potential of reducing SQL query time from 12 secs to about 1 sec.
See bug #2155 for additional details.

2) Add indices on the major columns that are queried and rewrite the queries to avoid full table scans. This should make a major difference, but it is
hard to acheive because we make use of the 'LIKE' operator in order to perform substring searches using wildcards. It appears that we need to use
the '=' operator in order for the indices to be used, and this eliminates some of our search capability. So far, i've determined we need the following
indices for the search:

xml_path_index on upper(nodedata)

xml_access on lower(principal_name)

xml_access on perm_type

xml_access on permission

xml_access on perm_order

xml_access on subtreeid

xml_documents on lower(user_owner)

3) Use paged query returns to cut down on the document size returned. This helps in 2 ways. First, it reduces the size of the XSLT transform, which
appears to be slow on larger documents. Second, it reduces the size of the HTMI document to be transferred to the client. See bug #129.

#3 - 11/09/2007 04:02 PM - Jing Tao

Move to 1.7.1 release

#4 - 03/27/2013 02:18 PM - Redmine Admin
Original Bugzilla ID was 1879

04/17/2024 22

https://projects.ecoinformatics.org/ecoinfo/issues/2155
https://projects.ecoinformatics.org/ecoinfo/issues/129
http://www.tcpdf.org

