Kepler - Bug #4256

Change to AbstractReceiver prevents putArray() from being called
07/22/2009 10:18 AM - Christopher Brooks

Status: Resolved Start date: 07/22/2009
Priority: Normal Due date:

Assignee: Christopher Brooks % Done: 0%
Category: director Estimated time: 0.00 hour
Target version: 2.0.0 Spent time: 0.00 hour
Bugzilla-ld: 4256

Description

Here's a bug from 5/13.

| agree that the problem is that putArray()

is no longer being called, which is being overridden in the derived
classes. domains/modal/kernel/FSMReceiver.java also calls putArray(),
so this is relevant.

| think the right solution is to modify ArrayToSequence and remove
the change to to AbstractReceiver.java

I'd like to see this fixed before we roll out Ptolemy Il 8.0.beta.
On 5/13, Bert Rodiers wrote:
Hello Christopher,

Another issue with this change is that putArray is no longer called, which
could be overridden by derived classes. Now this functionality is bypassed.
For example:

CIReceiver has this implementation:

public synchronized void putArray(Token[] tokenArray, int
numberOfTokens)

throws NoRoomException {

for (inti = 0; i < numberOfTokens; i++) {

_tokens.add(tokenArray[il);

}

_notify();
}

FSMReceiver has this implementation:

public void putArray(Token[] tokenArray, int numberOfTokens)
throws NoRoomException, lllegalActionException {

if (numberOfTokens != 1 || tokenArray.length < 1) {

throw new lllegalActionException(getContainer(), "Receiver
cannot accept more than one token.");

}

put(tokenArray®);

}

and so on...

Regards,

Bert
Edward wrote:

If the only difference is the order the loops,
| think we are OK with the change in AbstractReceiver.

03/13/2024

1/8

Edward

2009/5/13 Christopher Brooks <cxh@eecs.berkeley.edu>

Hi Dan,
| folded in your change.

One thing that has me concerned is that if the model mutates
between when we check the containers and when we do
the conversion, we could have problems.

For example, when | run
$PTII/bin/vergil ~/ptll/ptolemy/domains/pn/kernel/test/auto/block.xml

putArray ToAll() is called:

ptolemy.actor.AbstractReceiver.putArray ToAll(AbstractReceiver.java:297)

at ptolemy.actor.lOPort.send(IOPort.java:2728)

at ptolemy.actor.TypedlOPort.send(TypedIOPort.java:524)

at ptolemy.domains.sdf.lib.ArrayToSequence.fire(ArrayToSequence.java:176)
at ptolemy.actor.process.ProcessThread.run(ProcessThread.java:217)

| don't see where a lock is held that would prevent the model
from mutating between when we check the containers and when
we use them.

Interestingly, the original code had a similar problem, so
this is not a new issue.

I'm probably overlooking something . . .

To address Edward's concern, while | feel that this is a fundamental
change, we do have a trivial example that needs the change and
we don't have a counter example that is broken by the change.

The difference between what we had before and what we have now isr
the order of the loops. Previously, we looped through

the receivers in the outer loop and the tokens in the inner loop.

Now we loop through the tokens in the outer loop and the

receivers in the inner loop.

Why should this make a difference?
_Christopher
Hi Bert and Christopher,

Thanks for clarifying the performance problem, and adding
my update and test case.

What do you think of the following putArray ToAll? | think
this is what Bert suggested; it does not make extra calls
to getContainer.

public void putArrayToAll(Token[] tokens, int numberOfTokens,
Receiver(] receivers) throws NoRoomException,
lllegalActionException {

if (numberOfTokens > tokens.length) {

IOPort container = getContainer();

throw new lllegalActionException(container,

"Not enough tokens supplied.");

}

/I Cache the containers for each receiver to minimize
// the number of calls to getContainer.
IOPort[] containers = new IOPort[receivers.length];

03/13/2024

2/8

mailto:cxh@eecs.berkeley.edu

for (intj = 0; j < receivers.length; j++) {
containers[j] = receivers[jl.getContainer();

}

/I Loop through the tokens on the outer loop and
/I the receivers on the inner loop. See

/I pn/kernel/test/block.xml for a test case

/I (Bug fix proposed by Daniel Crawl.)

for(int i = 0; i < numberOfTokens; i++) {

for (intj = 0; j < receivers.length; j++) {

if (containers][j] == null) {
receiversl[j].put(tokensli]);

}else {
receivers[j].put(containers[j].convert(tokensli]));

!
1
1
1
Thanks,

--dan

On Wed May 13 10:12:27 PDT 2009
Sean Riddle wrote:

| agree that the correct approach would be to modify ArrayToSequence.
| can't remember quite why, but | also needed this behavior from
ArrayToSequence at some point, and the change is only one or two
lines, plus you're guaranteed that this won't affect other parts of

the system unexpectedly.

- Sean

On Wed May 13 08:32:39 PDT 2009

Edward A. Lee wrote:

03/13/2024

| see.

It seems to me that the "right" fix is to modify ArrayToSequence,
not to modify the mechanism in AbstractReceiver. The reason for
the mechanism in AbstractReceiver is to support bulk transfers
efficiently. I'm not sure where else this is used, but it does

seem that preserving this capability would be useful.

| don't feel that strongly about it though...
Edward
Jianwu Wang wrote:

Hi Edward,

Dan and | found the problem from a real world workflow. The workflow
includes about 50 job files, their execution time varies from 1 hours to 5
hours. The jobs can be submitted by firing JobSubmitter actor 50 times with
corresponding inputs, and their status can be checked by JobStatus actor in
a loop. | hope once one job is finished, the following actors related to the
data of this job can be processed without waiting for other jobs. So that we
can enable pipeline parallel. The workflow has the structure similar with

the attached test case. With default PN director configuration,
ArrayToSequence actor tries to send all array data to one next actor before

03/13/2024

sending data to another connected actor. But the Equals actor need the data
from the two Expressions to be fired. So the Equals actor will increase its
capacity and not be fired since there is still running actor (job actors).

The workflow has to wait all jobs are finished before processing the
following actors, which is very inefficient for my case.

With Dan's modification, the ArrayToSequence actor can transfer the

first token of the array to all the following actors before transfer the

second token. Then the Equals actor can be fired timely and do not need to
increase capacity. So the same workflow can realize real pipeline parallel,
namely the following actors can be fired immediately with corresponding data
once one job is finished.

Best wishes
Sincerely yours
Jianwu Wang

jlanwu@sdsc.edu

http://users.sdsc.edu/~jianwu/ <http://users.sdsc.edu/%7Ejianwu/>

Scientific Workflow Automation Technologies (SWAT) Laboratory
San Diego Supercomputer Center University of California, San Diego
San Diego, CA, U.S.A.
Edward A. Lee wrote:
| don't really understand the problem being solved here.
The deadlock is a consequence of setting the maximum queue capacity
to one. Why would you want to do that?
Edward
Daniel Crawl wrote:
Hi Edward,
Attached is the test case. | set the max queue capacity to one so
that an exception is thrown instead of an artificial deadlock
occurring. With my change, the exception does not occur and the
model finishes.
Is there a test case demonstrating the performance problem? In
both versions, put is called (with a single token) the same number
of times, so it's not clear how my change could hurt efficiency.
Thanks,
--dan
Edward A. Lee wrote:
Dan,
Are you sure the deadlock is artificial?
I would like to see the test case. Maybe the model isn't using
the right actors?
The point of the methods you changed was to improve
efficiency, and sending tokens one at a time nullifies
that point. There is really not point in even having these
methods, | think.
Edward

Daniel Crawl wrote:

4/8

mailto:jianwu@sdsc.edu
http://users.sdsc.edu/~jianwu/
http://users.sdsc.edu/%7Ejianwu/

Hi Christopher,

I made this update to prevent unnecessary artificial deadlocks
in PN under certain circumstances. | can add a test case that
demonstrates the problem.

If the convert is performed, is the update ok? Note that no
tests failed in ptolemy/actor/test/ due to this change...
Since calling convert is essential, | can also add a test case
for this.

There were effectively two nested loops before, so | do not see
how this change could degrade performance. If it is measurably
different, it is improved since the outer loop no longer calls

a method.

Thanks,
--dan
Christopher Brooks wrote:
Yep, | went ahead and reverted the change.
_Christopher
Edward A. Lee wrote:
The call to convert is essential.

Without it, we'll get some very esoteric and difficult to track

type system bugs. A likely manifestation is that actors will

start throwing ClassCastException because they have declared

an input to be double, so they cast incoming tokens to DoubleToken.
Without the call to convert(), they may get, say, an IntToken.

This will be a very unfriendly error...

Edward
Christopher Brooks wrote:

Hi Daniel,

I'm concerned that this is a performance hit because we

have two nested loops. Can you tell me more about why this
change is necessary? Do you have a test case that illustrates
the bug? Without a test case, it is not likely that the fix will
persist, though the comment should help.

The entire method is:
/** Put a sequence of tokens to all receivers in the specified
array.

¢ Implementers will assume that all such receivers

¢ are of the same class.

e @param tokens The sequence of token to put.

e @param numberOfTokens The number of tokens to put (the
array might

* be longer).

e @param receivers The receivers.

e @exception NoRoomException If there is no room for the
token.

e @exception lllegalActionException If the token is not
acceptable

¢ to one of the ports (e.g., wrong type), or if the tokens
array

¢ does not have at least the specified number of tokens.
*/

03/13/2024 5/8

03/13/2024

public void putArrayToAll(Token[] tokens, int numberOfTokens,
Receiver(] receivers) throws NoRoomException,
lllegalActionException {

if (numberOfTokens > tokens.length) {

IOPort container = getContainer();

throw new lllegalActionException(container,

"Not enough tokens supplied.");

}

/I Put a single token at a time for each receiver instead
of

// putting the entire array. In the latter case, we may
block

/I on a receiver while other receiver(s) starve.
for(int i = 0; i < numberOfTokens; i++) {

for (intj = 0; j < receivers.length; j++) {
receiversl[j].put(tokensi]);

}

}

}

| do see how this could be a problem with blocking though.

Your change is to call put() instead of putArray().
AbstractReceiver.putArray() looks like:

public void putArray(Token[] tokenArray, int numberOfTokens)
throws NoRoomException, lllegalActionException {
IOPort container = getContainer();

/I If there is no container, then perform no conversion.
if (container == null) {

for (inti=0; i < numberOfTokens; i++) {
put(tokenArray[i]);

1

} else {

for (inti = 0;i < numberOfTokens; i++) {
put(container.convert(tokenArrayl[i]));

}

}

}

It looks like your change is ok when the container is null, but
in the AbstractReceiver base class it does not handle the call
to convert()? I'm not sure if this is important or not.

I'm fairly certain that putArray ToAll() will be called when we
call
IOPort.broadcast.

What do you think?

_Christopher

Daniel Crawl wrote:

Author: crawl
Date: 2009-05-06 14:45:46 -0700 (Wed, 06 May 2009)
New Revision: 53516

Modified:
trunk/ptolemy/actor/AbstractReceiver.java

Log:

Put a single token at a time for each receiver in
putArray ToAll().

Modified: trunk/ptolemy/actor/AbstractReceiver.java

6/8

--- trunk/ptolemy/actor/AbstractReceiver.java 2009-05-06
21:13:26 UTC (rev 53515)

++ trunk/ptolemy/actor/AbstractReceiver.java 2009-05-06
21:45:46 UTC (rev 53516)

@ -300,8 +300,13 @

"Not enough tokens supplied.");

}

- for (int j = 0; | < receivers.length; j+) {

- receivers[j].putArray(tokens, numberOfTokens);

+ // Put a single token at a time for each receiver
instead of

+ // putting the entire array. In the latter case, we may
block

+ // on a receiver while other receiver(s) starve.

+ for(inti = 0; i < numberOfTokens; i++) {

+ for (intj = 0; j < receivers.length; j++) {

+ receiversl[j].put(tokensi]);
+

}

}

}

Ptexternal-cvs mailing list
Ptexternal-cvs@chess.eecs.berkeley.edu
http://chess.eecs.berkeley.edu/ptexternal/listinfo/ptexternal-cvs

Ptolemy maillist - Ptolemy@chess.eecs.berkeley.edu
http://chess.eecs.berkeley.edu/ptolemy/listinfo/ptolemy

Kepler-dev mailing list
Kepler-dev@kepler-project.org
http://mercury.nceas.ucsb.edu/kepler/mailman/listinfo/kepler-dev

Ptolemy maillist - Ptolemy@chess.eecs.berkeley.edu
http://chess.eecs.berkeley.edu/ptolemy/listinfo/ptolemy

Christopher Brooks (cxh at eecs berkeley edu) University of California

CHESS Executive Director US Mail: 337 Cory Hall
Programmer/Analyst CHESS/Ptolemy/Trust Berkeley, CA 94720-1774
ph: 510.643.9841 fax:510.642.2718 (Office: 545Q Cory)

home: (F-Tu) 707.665.0131 (W-F) 510.655.5480

Ptolemy maillist - Ptolemy@chess.eecs.berkeley.edu
http://chess.eecs.berkeley.edu/ptolemy/listinfo/ptolemy

History

03/13/2024 7/8

mailto:Ptexternal-cvs@chess.eecs.berkeley.edu
http://chess.eecs.berkeley.edu/ptexternal/listinfo/ptexternal-cvs
mailto:Ptolemy@chess.eecs.berkeley.edu
http://chess.eecs.berkeley.edu/ptolemy/listinfo/ptolemy
mailto:Kepler-dev@kepler-project.org
http://mercury.nceas.ucsb.edu/kepler/mailman/listinfo/kepler-dev
mailto:Ptolemy@chess.eecs.berkeley.edu
http://chess.eecs.berkeley.edu/ptolemy/listinfo/ptolemy
mailto:Ptolemy@chess.eecs.berkeley.edu
http://chess.eecs.berkeley.edu/ptolemy/listinfo/ptolemy

#2 - 07/23/2009 04:23 PM - Christopher Brooks

Bert Rodiers fixed this, the change has been merged into the 8.0.beta branch.

The fix was to revert the change in AbstractReceiver and fix ArrayToSequence.

| also added a test: pn/auto/PNAbstractReceiverTest.xml

#3 - 03/27/2013 02:26 PM - Redmine Admin
Original Bugzilla ID was 4256

Files
block.xml 5.43 KB 07/22/2009 Christopher Brooks
03/13/2024 8/8

http://www.tcpdf.org

