

Administrator's Guide for Metacat 1.10.0
Guide Version 1.1

February 2011

National Center for Ecological Analysis

and Synthesis (NCEAS)

Knowledge Network for Biocomplexity

 2

Administrator's Guide for Metacat 1.9.3
Guide Version 1.0, August 1, 2010

1 Introduction...3

1.1 What’s in this Guide ..4
1.2 Metacat Features..4

2 Downloading and Installing Metacat..6
2.1 System Requirements...6
2.2 Installing on Linux...6

2.2.1 Quick Start Overview...6
2.2.2 Downloading Metacat ..7
2.2.3 Installing and Configuring Required Software..9
2.2.4 Installing Metacat... 16
2.2.5 Optional Installation Options (LSID Server)... 19
2.2.6 Troubleshooting ... 22

2.3 Installing on Windows ... 23
3 Configuring Metacat.. 27

3.1 Initial Configurations... 27
3.2 Logging in to Metacat.. 30
3.3 Required Configurations .. 31

3.3.1 Global Properties (server, ports, etc)... 32
3.3.2 Authentication Configuration ... 34
3.3.3 Skins Configuration (look & feel) .. 34
3.3.4 Database Configuration.. 35
3.3.5 Geoserver Password Configuration (Highly Recommended) 37

3.4 Additional Configuration ... 38
4 Accessing and Submitting Metadata and Data ... 41

4.1 A Brief Note about How Information is Stored .. 41
4.2 Using the Registry ... 41
4.3 Using HTML Forms (the HTTP Interface)... 46
4.4 Using the EarthGrid API.. 61
4.5 Using Morpho.. 62
4.6 Creating Your Own Client ... 63

5 Metacat's Use of Geoserver ... 66
5.1 Installing and Configuring ... 67
5.2 Spatial Queries... 73

6 Replication .. 75
7 Harvester and Harvest List Editor.. 82

7.1 Configuring Harvester ... 82
7.2 Configuring a Harvest Site (Instructions for Site Contact).............................. 84
7.3 Running Harvester ... 92
7.4 Reviewing Harvest Reports.. 94

8 Event Logging... 96
9 Enabling Web Searches: Sitemaps ... 98
10 Creating a Java Class that Implements AuthInterface... 99
11 Appendix: Metacat Properties.. 99

 3

1 Introduction

Metacat is a repository for metadata (data about data), which helps scientists find,
understand and effectively use the data sets they manage or that have been created by
others. Thousands of data sets are currently documented in a standardized way and stored
in Metacat systems, providing the scientific community with a broad range of ecological
data that--because the data are well and consistently described--can be easily searched,
compared, merged, or used in other ways.

Not only is the Metacat repository a reliable place to store metadata and data (the
database is replicated over a secure connection so that every record is stored on multiple
machines and no data is ever lost to technical failures), it provides a user-friendly
interface for information entry and retrieval. Scientists can search the repository via the
Web using a customizable search form. Searches return results based on user-specified
criteria, such as desired geographic coverage, taxonomic coverage, and/or keywords that
appear in places such as the data set's title or owner's name. Users need only click a
linked search result to open the corresponding data-set documentation in a browser
window and discover whom to contact to obtain the data themselves (or how to
immediately download the data via the Web).

Metacat's user-friendly Registry application allows data providers to enter data-set
documentation into Metacat using a Web form. When the form is submitted, Metacat
compiles the provided documentation into the required format and saves it. Information
providers need never work directly with the XML format in which the data are stored or
with the database records themselves. In addition, the Metacat application can easily be
extended to provide a customized data-entry interface that suits the particular
requirements of each project. Metacat users can also choose to enter metadata using the
Morpho application, which provides data-entry wizards that guide information providers
through the process of documenting each data set.

The metadata stored in Metacat includes all of the information you and others need to
understand what the described data are and how to use them: a descriptive data set title;
an abstract; the temporal, spatial, and taxonomic coverage of the data; the data collection
methods; distribution information; and contact information. Each information provider
decides who has access to this information (the public, or just specified users), and
whether or not to upload the data set itself with the data documentation. Information
providers can also edit the metadata or delete it from the repository, again using Metacat's
straightforward Web interface.

Metacat is a Java servlet application that runs on Window or Linux platforms in
conjunction with a database, such as PostgreSQL (or Oracle 8i), and a Web server. The
Metacat application stores data in an XML format using Ecological Metadata Language
(EML) or another ecological metadata standard. For more information about Metacat or
for examples of projects currently using Metacat, please see http://knb.ecoinformatics.org.

 4

1.1 What’s in this Guide

The Administrator guide includes information for installing, configuring, managing and
extending Metacat for both Linux and Windows systems. Chapter Two contains
instructions for downloading and installing Metacat and the applications required to run
the software on Linux and Microsoft platforms. Chapter Three covers how to configure
Metacat, both for new and upgraded installations. Chapter Four details the ways in which
you can customize the Metacat interface so users can access and submit information
easily: using Metacat's generic web-interface (the Registry), creating your own HTML
forms, and creating your own desktop client (like Morpho). Chapter Five discusses how
to work with Metacat's Geoserver. Chapter Six describes how to set up the Metacat's
replication service, which permits Metacat servers to share data with each other,
effectively backing up metadata and data files. Chapter Seven looks at the Metacat
Harvester, a program that automates the retrieval of EML documents from one or more
sites and their subsequent upload (insert or update) to Metacat. Chapter Eight discusses
logging, Chapter Nine contains instructions for creating a site map, which makes
individual metadata entries available via Web searches. Metacat's Java API is included as
an appendix at the end of the guide.

1.2 Metacat Features

Metacat is a repository for metadata (data about data), which help scientists find,
understand and effectively use the data sets they manage or that have been created by
others. Specifically,

 Metacat is a Java servlet application, which can run on both Windows and Linux
systems

 Metadata submitted to Metacat is broken into modules, which are stored to
optimize rapid information retrieval

 Metacat's Web interface facilitates the input and retrieval of data (Figure 1.1)
 Metacat's optional mapping functionality enables you to query and visualize the

geographic coverage of stored documents
 Metacat's replication feature ensures that all Metacat data and metadata is stored

safely on multiple Metacat servers
 The Metacat interface can be easily extended and customized via Web forms,

skins, and/or user-developed Java clients
 The Metacat harvester automates the process of retrieving and storing EML

documents from one or more sites
 Metacat can be customized to use Life Sciences Identifiers (LSIDs), uniquely

identifying every data record
 Metacat has a built-in logging system for tracking events such as document

insertions, updates, deletes, and reads
 The appearance of Metacat's Web interface can be customized via skins.

 5

 Figure 1.1: Metacat's default home page. Users can customize the appearance using skins.

 6

2 Downloading and Installing Metacat

Instructions for both Linux and Windows systems are included in this section.

2.1 System Requirements

In addition to meeting the recommended system requirements, the server on which you
wish to install Metacat must have the following software installed and running correctly:

• PostgreSQL (or another SQL92-compliant RDBMS like Oracle 8i)
• Apache Jakarta-Ant (if building from source)
• Apache Jakarta-Tomcat
• Apache Web server (recommended*)
• Java 6 (Note: Java 5 is deprecated)

System requirements for running Metacat:

• a server running an SQL92-compliant database (PostgreSQL recommended)
• at least 128MB RAM
• a Pentium III processor (or higher)
• 11 MB disk space (Note: The amount of disk space required depends on the size

of your RDBMS tablespace (which should be at least 10 MB; however, Metacat
itself requires only about 140 MB of free space after installation).

* In order to use the Metacat Registry (and for a more robust Web-serving environment
in general), the Apache Web server should be installed with Tomcat and the two should
be integrated. See the installing Apache for more information.

2.2 Installing on Linux

Section 2.2 contains instructions for downloading and installing Metacat on Linux
systems.

2.2.1 Quick Start Overview

For the impatient or those who have already installed Metacat and know what they are
doing, here are the steps needed to install Metacat. Detailed instructions for each step are
in the next section.

1. Download and install prerequisites (Java 6, Tomcat 5, PostgreSQL, Apache),
including the tomcat5.5 init.d script

 7

2. Create a database in PostgreSQL named 'metacat' and authorize access to it in
pb_hba.conf for the user 'metacat'

3. Log in to PostgreSQL and create the 'metacat' user
4. Download Metacat from the KNB Software Download Page and extract the

archive
5. sudo mkdir /var/metacat; sudo chown -R <tomcat_user> /var/metacat
6. sudo cp <metacat_package_dir>/knb.war <tomcat_app_dir>
7. sudo /etc/init.d/tomcat5.5 restart
8. Configure Metacat through the Web interface

2.2.2 Downloading Metacat

Before installing Metacat, please ensure that all required software is installed and running
correctly. To obtain a Metacat WAR file, which is needed for installation, download one
of the following:

• the Metacat installer, which has a pre-built WAR file,
• the Metacat source distribution, which must be built in order to create a WAR file,
• the Metacat source code from SVN. You must build the source code in order to

create a WAR file.

Instructions for all three options are discussed below. Note that downloading the installer
(described in the next section) is the simplest way to get started.

2.2.2.1 Download the Metacat Installer

Downloading the Metacat Installer is the simplest way to get started with the application.
To download the installer:

1) Browse to the KNB Software Download Page
(http://knb.ecoinformatics.org/software/download.html). In the Metacat section, select the
link to the "GZIP file" (the link should look like: metacat-bin-X.X.X.tar.gz, where
X.X.X is the latest version of Metacat e.g., 1.9.0)

2) Save the file locally.

3) Extract the Metacat package files by typing:

tar -xvzf metacat-bin-X.X.X.tar.gz

You should see a WAR file and several supporting files (Table 2.1). The extraction
location will be referred to as the <metacat_package_dir> for the remainder of this
documentation.

 8

File Description
knb.war The Metacat Web archive file (WAR)
knb The Web definition file used by Apache on

Ubuntu/Debian Linux systems.
Knb.ssl The SSL definition file used by Apache on

Ubuntu/Debian Linux systems.
jk.conf The JkMount configuration file used by Apache on

Ubuntu/Debian Linux systems.
workers.properties The workers definition file used by Apache on

Ubuntu/Debian Linux systems.
tomcat5.5 The Tomcat startup script for Tomcat 5.5 installed

with apt-get on Ubuntu/Debian Linux systems.
authority The optional LSID Server application WAR

Table 2.1: Files extracted from the Metacat GZip file.

2.2.2.2 Download Metacat Source Code

To get the Metacat source distribution:

1) Browse to http://knb.ecoinformatics.org/software/download.html. In the Metacat
section, select the link to the Metacat Source code (it will look something like
this: metacat-src-X.X.X.tar.gz, where X.X.X is the latest version of Metacat, e.g.,
1.9.0).

2) Save the file locally.

3) Extract the Metacat package files by typing (replace X.X.X with the current

version number):

tar -xvzf metacat-src-X.X.X.tar.gz

4) Rename the metacat-X.X.X directory to metacat.

Note that you do not need to create the WAR file directly because the Ant build-file has
an "install" target that will build and deploy the WAR for you.

2.2.2.3 Check Out Metacat Source Code from SVN (for Developers)

If you wish to work with the most recent Metacat code, or you'd like to extend the
Metacat code yourself, you may wish to check out the Metacat source code from SVN.

 9

You will need a Subversion (SVN) client installed and configured on your system (see
the end of this section for information about obtaining an SVN client).

To check out the code from SVN, go to the directory where you would like the code to
live and type:

svn co https://code.ecoinformatics.org/code/metacat/tags/METACAT_<rev> metacat

Where <rev> is the version of the code you want to check out (like 1_9).

To check out the head, type:

svn co https://code.ecoinformatics.org/code/metacat/trunk metacat

You should see a list of files as they check out.

Note that you do not need to create the WAR file directly because the Ant build-file has
an "install" target that will build and deploy the WAR for you.

Installing an SVN Client:

If you have not already installed Subversion and you are running Ubuntu/Debian, you
can get the SVN client by typing:

sudo apt-get install subversion

Otherwise, you can get the SVN client from The Subversion homepage
(http://subversion.tigris.org/).

2.2.3 Installing and Configuring Required Software

Before you can install and run Metacat, you must ensure that a recent Java SDK,
PostgreSQL (or another SQL92-compliant RDBMS like Oracle 8i), Ant (if installing
from source), and Tomcat are installed and running correctly. We also highly recommend
that you install Apache Web server, as it provides a more robust Web-serving
environment and is required by some Metacat functionality.

• Java 6
• Apache Jakarta-Tomcat
• Apache Web Server (Highly Recommended)
• PostgreSQL Database (or Oracle 8i)
• Apache Jakarta-Ant (if building from Source)

 10

2.2.3.1 Java 6

To run Metacat, you should use Java 6 (Java 5 is deprecated and will not be supported
after Metacat version 1.9.2). Make sure that the JAVA_HOME environment variable is
properly set and that both java and javac are on your PATH.

To install Java if you are running Ubuntu/Debian, type:

sudo apt-get install sun-java6-jdk

Click "ok" then "yes" for license agreement.

If you are not using Ubuntu/Debian, you can get Java from the Sun website
(http://www.sun.com).

2.2.3.2 Apache Jakarta-Tomcat

We recommend that you install Tomcat 5.5 into the directory of your choice. Included
with the Metacat download is a Tomcat-friendly start-up script that should be installed as
well.

Note: we will refer to the Tomcat installation directory as <tomcat_home> for the remainder
of the documentation.

If you are running Ubuntu/Debian, get Tomcat by typing:

sudo apt-get install tomcat5.5

Otherwise, get Tomcat from the Apache Tomcat page.

Install the Metacat-friendly Tomcat start-up script by typing:

sudo /etc/init.d/tomcat5.5 stop
sudo mv /etc/init.d/tomcat5.5 /etc/init.d/tomcat5.5.bak
sudo cp <metacat_package_dir>/debian/tomcat5.5 /etc/init.d/tomcat5.5
sudo chmod +x /etc/init.d/tomcat5.5

2.2.3.3 Apache Web Server (Highly Recommended)

Although you have the option of running Metacat with only the Tomcat server, we highly
recommend that you run it behind the Apache Web server for several reasons: Running
Tomcat with the Apache server provides a more robust Web serving environment, and
the Apache Web server is required if you wish to install and run the Metacat Registry.

 11

This section contains instructions for installing and configuring the Apache Web server
for Metacat on an Ubuntu/Debian system. Instructions for configuring Apache running on
other Linux systems are included at the end of this section.

1) Install the Apache and Mod JK packages (Mod JK is the module Apache uses to
talk to Tomcat applications) by typing:

sudo apt-get install apache2 libapache2-mod-jk

If you are installing the Apache server on an Ubuntu/Debian system, and you
installed Apache using apt-get as described above, the Metacat code will have
helper files that can be dropped into directories to configure Apache. Depending
on whether you are installing from binary distribution or source, these helper files
will be in one of two locations:

• the directory in which you extracted the distribution (for binary distribution)
• <metacat_code_dir>/src/scripts (for both the source distribution and

source code checked out from SVN)

We will refer to the directory with the helper scripts as <metacat_helper_dir>
and the directory where Apache is installed (e.g., /etc/apache2/) as
<apache_install_dir>.

2) Set up Mod JK apache configuration by typing:

sudo cp <metacat_helper_dir>/jk.conf <apache_install_dir>/mods-available
sudo cp <metacat_helper_dir>/workers.properties <apache_install_dir>

3) Disable and re-enable the Apache Mod JK module to pick up the new changes:

sudo a2dismod jk
sudo a2enmod jk

4) Apache needs to know about the Metacat site. The helper file named "knb" has

rules that tell Apache which traffic to route to Metacat. Set up the knb (Metacat)
site by dropping the knb file into the sites-available directory and running
a2ensite to enable the site:

sudo cp <metacat_helper_dir>/knb <apache_install_dir>/sites-available
sudo a2ensite knb

5) Restart Apache to bring in changes by typing:

sudo /etc/init.d/apache2 restart

 12

Configuring Apache on an OS other than Ubuntu/Debian

If you are running on an O/S other than Ubuntu/Debian (e.g., Fedora Core or
RedHat Linux) or if you installed the Apache source or binary, you must
manually edit the Apache configuration file, where <apache_install_dir> is the
directory in which Apache is installed:

<apache_install_dir>/conf/httpd.conf

1) Configure the log location and level for Mod JK. If your configuration
file does not already have the following section, add it and set the log
location to any place you'd like:

<IfModule mod_jk.c>
JkLogFile "/var/log/tomcat/mod_jk.log"
JkLogLevel info
</IfModule>

2) Configure apache to route traffic to the Metacat application. ServerName
should be set to the DNS name of the Metacat server. ScriptAlias and the
following Directory section should both point to the cgi-bin directory
inside your Metacat installation.

<VirtualHost XXX.XXX.XXX.XXX:80>

DocumentRoot /var/www
ServerName dev.nceas.ucsb.edu
ErrorLog /var/log/httpd/error_log
CustomLog /var/log/httpd/access_log common
ScriptAlias /cgi-bin/ "/var/www/cgi-knb/"
<Directory /var/www/cgi-knb/>

AllowOverride None
Options ExecCGI
Order allow,deny
Allow from all

</Directory>
ScriptAlias /knb/cgi-bin/ "/var/www/webapps/knb/cgi-bin/"
<Directory "/var/www/webapps/knb/cgi-bin/">

AllowOverride None
Options ExecCGI
Order allow,deny
Allow from all

</Directory>
JkMount /knb ajp13
JkMount /knb/* ajp13
JkMount /knb/metacat ajp13
JkUnMount /knb/cgi-bin/* ajp13
JkMount /*.jsp ajp13
JkMount /metacat ajp13
JkMount /metacat/* ajp13

</VirtualHost>

 13

3) Copy the "workers.properties" file provided by Metacat into your
Apache configuration directory (<apache_install_dir>/conf/). Depending
on whether you are installing from binary distribution or source, the
workers.properties file will be in one of two locations:

• the directory in which you extracted the Metacat distribution (for

binary distribution)
• <metacat_code_dir>/src/scripts/workers.properties (for both the

source distribution and source code checked out from SVN)

4) Edit the workers.properties file and make sure the following properties
are set correctly:

workers.tomcat_home - set to the Tomcat install directory on your
system.
workers.java_home - set to the Java install directory on your system.

5) Restart Apache to bring in changes by typing:

sudo /etc/init.d/apache2 restart

2.2.3.4 PostgreSQL Database (or Oracle 8i)

Metacat has been most widely tested with PostgreSQL and we recommend using it.
Instructions for installing and configuring Oracle 8i are also included at the end of this
section.

To install and configure PostgreSQL:

1) If you are running Ubuntu/Debian, get PostgreSQL by typing:

sudo apt-get install postgresql

On other systems, install the rpms for postgres.

2) Start the database by running:

/etc/init.d/postgresql start

3) Change to postgres user:

sudo su - postgres

4) Set up an empty Metacat database instance by editing the postgreSQL

configuration file:

 14

gedit /etc/postgresql/8.3/main/pg_hba.conf

Add the following line to the configuration file:

host metacat metacat 127.0.0.1 255.255.255.255 password

Save the file and then create the Metacat instance:

createdb metacat

5) Log in to postgreSQL by typing:

psql metacat

6) At the psql prompt, create the Metacat user by typing:

CREATE USER metacat WITH UNENCRYPTED PASSWORD 'your_password';

where 'your_password' is whatever password you would like for the Metacat
user.

7) Exit PostgreSQL by typing

\q

8) Restart the PostgreSQL database to bring in changes:

/etc/init.d/postgresql-8.3 restart

9) Log out of the postgres user account by typing:

logout

10) Test the installation and Metacat account by typing:

psql -U metacat -W -h localhost metacat

11) Log out of postgreSQL:

\q

 15

The Metacat servlet automatically creates the required database schema. For more
information about configuring the database, please see Database Configuration.

Installing and Configuring Oracle 8i

To use Oracle 8i with Metacat, the Oracle RDBMS must be installed and running as a
daemon on the system. In addition the JDBC listener must be enabled. Enable it by
logging in as an Oracle user and typing:

lsnrctl start

Your instance should have a table space of at least 5 MB (10 MB or higher
recommended). You must also create and enable a username specific to Metacat. The
Metacat user must have most normal permissions including: CREATE SESSION,
CREATE TABLE, CREATE INDEX, CREATE TRIGGER, EXECUTE PROCEDURE,
EXECUTE TYPE, etc. If an action is unexplainably rejected by Metacat, the user
permissions are (most likely) not correctly set.

The Metacat servlet automatically creates the required database schema. For more
information, please see Database Configuration.

2.2.3.5 Apache Jakarta-Ant (if building from Source)

If you are building Metacat from a source distribution or from source code checked out
from SVN, Ant is required. (Users installing Metacat from the binary distribution do not
require it.) Ant is a Java-based build application similar to Make on UNIX systems. It
takes build instructions from a file named "build.xml", which is found in the root
installation directory. Metacat source code comes with a default "build.xml" file that may
require some modification upon installation.

If you are running Ubuntu/Debian, get Ant by typing:

sudo apt-get install ant

Otherwise, get Ant from The Apache Ant homepage (http://ant.apache.org/).

Ant should be installed on your system and the "ant" executable shell script should be
available in the user's path. The latest Metacat release was tested with Ant 1.6.5.

 16

2.2.4 Installing Metacat

Instructions for a new install, an upgrade, and a source install are included below.

2.2.4.1 New Install

Before installing Metacat, please ensure that all required applications are installed,
configured to run with Metacat, and running correctly. If you are upgrading an existing
Metacat servlet, please skip to Upgrade. For information about installing from source,
skip to Source Install and Upgrade.

To install a new Metacat servlet:

1) Create the Metacat directory. Metacat uses a base directory to store data,
metadata, temporary files, and configuration backups. This directory should be
outside of the Tomcat application directory so that it will not get wiped out during
an upgrade. Typically, the directory is '/var/metacat', as shown in the instructions.
If you choose a different location, remember it. You will be asked to configure
Metacat to point to the base directory at startup.

Create the Metacat directory by typing:

sudo mkdir /var/metacat

2) Change the ownership of the directory to the user that will start Tomcat by typing:

sudo chown -R <tomcat_user> /var/metacat

Note: If you are starting Tomcat as the root user, you do not need to run the
chown command.

3) Install the Metacat WAR in the Tomcat web-application directory. For

instructions on downloading the Metacat WAR, please see Downloading Metacat.
Typically, Tomcat will look for its application files (WAR files) in the
<tomcat_home>/webapps directory (e.g., /usr/share/tomcat5.5/webapps). Your
instance of Tomcat may be configured to look in a different directory. We will
refer to the Tomcat application directory as <tomcat_app_dir>. To install the
Metacat WAR:

sudo cp <metacat_package_dir>/knb.war <tomcat_app_dir>

 17

NOTE: The name of the WAR file (e.g., knb.war) provides the application
context, which appears in the URL of the Metacat (e.g.,
http://yourserver.com/knb/). To change the context, simply change the name of
the WAR file to the desired name.

4) Restart Tomcat. Log in as the user that runs your Tomcat server (often "tomcat")

and type:

/etc/init.d/tomcat5.5 restart

Congratulations! You have now installed Metacat. If everything is installed
correctly, you should see the Authentication Configuration screen (Figure 2.1)
when you type http://yourserver.com/yourcontext/ (e.g.,
http://knb.ecoinformatics.org/knb) into a browser. For more information about
configuring Metacat, please see Section 3.

Figure 2.1: The
Authentication
Configuration screen
appears the first time you
open a new installation of
Metacat. For more
information about these
settings, please see
Authentication
Configuration.

2.2.4.2 Upgrade Metacat

To upgrade an existing binary Metacat installation follow the steps in this section. The
steps for upgrading Metacat from source are the same as the instructions for installing
from source:

1) Download and extract the new version of Metacat. For more information about
downloading and extracting Metacat, please see Downloading Metacat.

 18

2) Stop running Metacat. To stop Metacat, log in as the user that runs your Tomcat
server (often "tomcat") and type:

/etc/init.d/tomcat5.5 stop

3) Back up the existing Metacat installation. Although not required, we highly

recommend that you back up your existing Metacat to a backup directory
(<backup_dir>) before installing a new one. You can do so by typing:

cp <web_app_dir>/knb <backup_dir>/knb.<yyyymmdd>
cp <web_app_dir>/knb.war <backup_dir>/knb.war.<yyyymmdd>

Warning: Do not backup the files in the <web_app_dir> directory. Tomcat will
try to run the backup copy as a service.

4) Copy the new Metacat WAR file in to Tomcat applications directory:

sudo cp <metacat_package_dir>/knb.war <tomcat_app_dir>

Note: Typically, Tomcat will look for its application files (WAR files) in the
<tomcat_home>/webapps directory. Your instance of Tomcat may be configured
to look in a different directory.

5) If you have been (or would like to start) running an LSID server, copy the new

authority.war file to the Tomcat applications directory. For more information
about the LSID server, please see Optional Installation Options.
sudo cp <metacat_package_dir>/authority.war <tomcat_app_dir>

6) Restart Tomcat (and Apache if you have Tomcat integrated with it). Log in as the

user that runs your Tomcat server (often "tomcat"), and type:

/etc/init.d/tomcat5.5 restart

7) Run your new Metacat servlet. Go to a Web browser and type:

http://yourserver.yourdomain.com/yourcontext/

You should substitute your context name for "yourcontext" in the URL above (your
context will be "knb" unless you change the name of the knb.war file to something else).
If everything is working correctly, you should be presented with Metacat's Authorization
Configuration screen. Note that if you do not have Tomcat integrated with Apache you
will probably have to type http://yourserver.yourdomain.com:8080/yourcontext/

 19

2.2.4.3 Source Install and Upgrade

Whether you are building Metacat from the source distribution or source code checked
out from SVN, you will need Apache Ant to do the build (see Installing and Configuring
Required Software for more information about Ant).

To install Metacat from source:

1) Edit the build.properties file found in the directory in which you downloaded
Metacat. Note: Throughout the instructions, we will refer to this directory as
<metacat_src_dir>.

a) Set the build.tomcat.dir property to your Tomcat installation directory.

Metacat will use some of the native Tomcat libraries during the build. For
instance: build.tomcat.dir=/usr/local/tomcat

b) Set the app.deploy.dir property to your application deployment directory.
For instance: app.deploy.dir=/usr/local/tomcat/webapps

2) In the <metacat_src_dir>, run:

sudo ant clean install

You will see the individual modules get built. You should see a "BUILD
SUCCESSFUL" message at the end.

You should see a new file named knb.war in your application deployment
directory.

To run your new Metacat servlet, open a Web browser and type:

http://yourserver.yourdomain.com/yourcontext/ (e.g. http://knb.ecoinformatics.org/knb/)

Your context will be "knb" unless you changed the name of the knb.war file to
something else. The servlet may require a few seconds to start up, but once it is
running, you will be presented with the Authorization Configuration screen.

2.2.5 Optional Installation Options (LSID Server)

Metacat's optional LSID server allows Metacat to use a standardized syntax for
identifying data sets, in addition to Metacat's internal, custom scheme for identifiers.
LSID's were designed to identify complex biological entities with short identifiers (much

 20

like DOIs in publishing) that are both computer and human readable. LSID identifiers are
URIs and are therefore usable in many Internet applications, but they also cleanly
separate the identity of a data set (i.e., its permenant identifier) from its current location
(e.g., the list of URLs from which it might be retrieved). LSIDs accomplish this by using
a level of indirection; the identifier represents simply a name without location, but an
associated resolver service can be used to locate the current location of the data and
medata for the data set. This is accomplished by establishing a well-known location for
the resolution service for each authority using an infrequently used feature of the domain
name system called SRV records. At its most basic, resolution of an identifier is
performed when a client looks up the SRV record for an LSID by querying DNS, which
returns the current host and port of the authority web service, which is in turn used to
locate the data and metadata.

Using LSIDs to identify data records is being debated among members of the Taxonomic
Databases Working Group (TDWG). There are several alternate technologies that are
under consideration (e.g., DOI, plain http URIs), and so at this time the support for LSIDs
in Metacat has been created on an experimental basis only. If the LSID approach is
ratified by the broader community, we will expand support for LSIDs in Metacat, but
until then it is an optional and experimental feature.

The format of an LSID is:

urn:lsid:<Authority>:<Namespace>:<ObjectID>[:<Version>]
e.g., urn:lsid:ecoinformatics.org:tao:12039:1

When you enable the Metacat LSID support, you can use LSID clients (such as LSID
Launchpad) and LSID notation to query Metacat for data and metadata. LSID notation
can be used directly in Metacat HTTP queries as well. For example, a data package with
an ID tao.12039.1 that is stored in a Metacat available at: http://example.com:9999 can be
accessed by the following HTTP Metacat queries:

http://example.com:9999/authority/data?lsid=urn:lsid:ecoinformatics.org
:tao:12039:1
(To return the data)

http://example.com:9999/authority/metadata?lsid=urn:lsid:ecoinformatics
.org:tao:12039:1
(To return the metadata)

Notice that in the HTTP query strings, the periods in the data package ID have been
replaced with colons. The authority (ecoinformatics.org) must be properly configured
by the Metacat administrator. Note: In order to configure the authority, you must have
access to the DNS server for the Metacat domain. Further instructions are provided
below.

To install and configure the LSID Server with Metacat:

To install the LSID server using the binary installation:

 21

1) Copy the authority.war file to Tomcat

sudo cp <metacat_package_directory>/authority.war
/usr/share/tomcat5.5/webapps

2) Set up the LSID server by dropping the authority file into Apache's sites-

available directory and running a2ensite to enable the site:

sudo cp <metacat_helper_dir>/authority /etc/apache2/sites-available
sudo a2ensite authority

3) Restart Tomcat. Log in as the user that runs your Tomcat server (often "tomcat")

and type:

/etc/init.d/tomcat5.5 restart

4) Restart Apache to bring in changes by typing:

sudo /etc/init.d/apache2 restart

5) See notes beneath LSID server source installation for instructions for modifying

the SRV record(s)

To install the LSID server from a source installation:

1) In the build.properties file found in the directory into which you
extracted the Metacat source code, set the authority and
config.lsidauthority properties. For example:

authority.context=authority
config.lsidauthority=ecoinformatics.org

2) In the <metacat-src-dirctory> create the authority.war by running:

sudo ant war-lsid

6) Copy the LSID WAR file into the Tomcat application directory.

sudo cp <metacat_package_dir>/dist/authority.war
<tomcat_app_dir>

 22

7) Restart Tomcat. Log in as the user that runs your Tomcat server (often "tomcat")

and type:

/etc/init.d/tomcat5.5 restart

8) If you are running Tomcat behind the Apache server (the recommended

configuration), set up and enable the authority service site configurations by
typing:

sudo cp <metacat_helper_dir>/authority <apache_install_dir>/sites-
available
sudo a2ensite authority

 Where <metacat_helper_dir> can be found in <metacat_code_dir>/src/scripts

9) Restart Apache to bring in changes by typing:

sudo /etc/init.d/apache2 restart

Once the authority.war is installed, you must also modify the SRV record(s) on the DNS
server for the domain hosting the Metacat. The record should be added to the master zone
file for the metacat's DNS server:

_lsid._tcp IN SRV 1 0 8080
<metacat.edu>.

Where <metacat.edu> is the name of the machine that will serve as the physical
location of the AuthorityService.

For example, the value of <metacat.edu> for the below example URL would be
example.com:

http://example.com:9999/authority/data?lsid=urn:lsid:ecoinformatics.org
:tao:12039:1

For more information, please see
http://www.ibm.com/developerworks/opensource/library/os-lsid/

2.2.6 Troubleshooting

We keep and update a list of common problems and their solutions on the KNB website.
See http://knb.ecoinformatics.org/software/metacat/troubleshooting.html for more
information.

 23

2.3 Installing on Windows

Metacat can be installed on Windows. Please follow the instructions in this section for
downloading Metacat, installing the required software, and installing Metacat. Note that
Registry and Data Upload functionality has not been tested on Windows.
2.3.1 Download Metacat

To obtain a Metacat WAR file, which is used when installing the Metacat servlet:

1. Browse to the KNB Software Download Page. In the Metacat section, select the
link that looks like: metacat-bin-X.X.X.zip, where X.X.X is the latest version
of Metacat (e.g., 1.9.0).

2. Choose to download and Save the file locally.

3. Extract the Metacat package files using your Windows zip utility. You should see

a WAR file and several supporting files (we will only use the WAR file when
installing Metacat).

Note: The location where these files were extracted will be referred to as the
<metacat_package_dir> for the remainder of this documentation.

Note: Before installing Metacat, please ensure that all required software is installed
and running correctly.

2.3.2 Install Required Software

Before you can install and run Metacat, you must ensure that a recent Java SDK,
PostgreSQL and Tomcat are installed, configured, and running correctly.

• Java 6
• Tomcat
• PostgreSQL Database

2.3.2.1 Java 6

To run Metacat, you must have Java 6. (Java 5 is deprecated). Make sure that the
JAVA_HOME environment variable is properly set and that both java and javac are on
your PATH.

To download and install Java:

1. Browse to: http://java.sun.com/javase/downloads/widget/jdk6.jsp and follow the
instructions to download JDK 6.

 24

2. Run the downloaded installer to install Java.

3. Set the JAVA_HOME environment variable: In "My Computer" properties, go to

"advanced settings > environment variables". Add:
 System Variable: JAVA_HOME C:\Program Files\Java\jdk1.6.0_18 (or

whichever version you downloaded)

2.3.2.2 Tomcat

We recommend that you install Tomcat version 5.5.

To download and install Tomcat:

1) Browse to: http://tomcat.apache.org/download-55.cgi

2) Download the Tomcat core zip file

3) Extract Tomcat files to C:\Program Files\tomcat using the windows zip

utility.

2.3.2.3 PostgreSQL Database

Metacat can be run with any SQL92-compliant RDBMS, but it has been most widely
tested with PostgreSQL. Instructions for installing and configuring PostgreSQL for use
with Metacat are included in this section.

To download and install PostgreSQL:

1) Browse to http://www.postgresql.org/download/windows and download the one-
click installer

2) Run the installer

3) Edit C:\Program Files\PostgreSQL\8.3\data and add:

host metacat metacat 127.0.0.1 255.255.255.255 password

4) Create a super user. At the command line, go to C:\Program Files\PostgreSQL\8.3\bin
and run:

createdb -U postgres metacat (enter super user password)

5) Log in to PostgreSQL:

psql -U postgres metacat (enter super user password)

 25

6) Create a Metacat user:

CREATE USER metacat WITH UNENCRYPTED PASSWORD 'your_password'

7) Exit PostgreSQL:

\q

8) Restart PostgreSQL from the start menu by selecting:

run start/All Programs/PostgreSQL 8.3/Stop Server
run start/All Programs/PostgreSQL 8.3/Start Server

9) Test the installation by logging in as the metacat user:

Psql –U metacat –W –h localhost metacat

10) Exit PostgreSQL:

\q

The Metacat servlet automatically creates the required database schema. For more
information, please see Database Configuration.

2.3.3 Installing Metacat

Instructions for a new install and for an upgrade are included below.

2.3.3.1 New Install

Before installing Metacat, please ensure that all required applications are installed,
configured to run with Metacat, and running correctly. If you are upgrading an existing
Metacat servlet, please skip to Upgrade.

To install a new Metacat servlet:

1) Create the Metacat base directory at:

C:/Program Files/metacat

 26

2) Copy the Metacat WAR file to Tomcat (for information about obtaining a Metacat
WAR file, see Download Metacat):
copy <metacat_package_dir>\knb.war C:\Program
Files\tomcat\webapps

3) Restart Tomcat:

C:\Program Files\tomcat\shutdown.bat
C:\Program Files\tomcat\startup.bat

Congratulations! You are now ready to configure Metacat. Please see Section 3,
Configuring Metacat for more information.

2.3.3.2 Upgrade

To upgrade an existing Metacat installation:

1) Download and extract the new version of Metacat. For more information about
downloading and extracting Metacat, please see Download Metacat.

2) Back up the existing Metacat installation. Although not required, we highly

recommend that you back up your existing Metacat to a backup directory
(<backup_dir>) before installing a new version. You can do so by copying:

<web_app_dir>/knb to <backup_dir>/knb.<yyyymmdd>

<web_app_dir>/knb.war to <backup_dir>/knb.war.<yyyymmdd>

Warning: Do not backup the knb directory in the <web_app_dir> directory.
Tomcat will try to run the backup copy as a service.

3) Copy the new Metacat WAR file in to Tomcat applications directory:

copy knb.war C:\Program Files\tomcat\webapps

4) Restart Tomcat:

C:\Program Files\tomcat\shutdown.bat
C:\Program Files\tomcat\startup.bat

Congratulations! You are now ready to configure Metacat. Please see Configuring
Metacat for more information.

 27

3 Configuring Metacat

When Metacat (Tomcat) is started, the Metacat servlet checks to see if it is configured. If
not, Metacat will automatically send you to the configuration pages.

If the installation is new, or the previous version is before 1.9.0, pay close attention to the
configuration values. If you have upgraded Metacat, and the previous version is 1.9.0 or
later, Metacat will pull existing configuration settings from a backup location. You
should still verify that the values are correct.

To access your Metacat, open a Web browser and type:

http://<your_context_url>

Where <your_context_url> is the URL of the server hosting the Metacat followed by
the name of the WAR file (i.e., the application context) that you installed. For instance,
the context URL for the KNB Metacat is: http://knb.ecoinformatics.org/knb

You can always open the configuration screen from within Metacat by typing:

http://<your_context_url>/admin

3.1 Initial Configurations

Before you can log in to the Metacat and configure it, you are required to confirm
Metacat's back-up location and authentication configuration (if not already configured).
Metacat will automatically attempt to locate an existing back-up directory, but you may
need to correct the value or specify a directory (if the installation is new, or if Metacat
was unable to determine the location of an existing back-up directory). The
authentication configuration is required for logging in to the Metacat and for defining
administrative accounts. Instructions for changing the authentication configuration
without authentication are included at the end of this section.

3.1.1 Back-up Configuration

To preserve its configuration settings, Metacat backs up all configurations to a directory
outside the application directories. Because a new installation/upgrade does not know
where this external directory is, Metacat uses a discovery algorithm to locate it. If
Metacat cannot identify a backup directory, you will see the Backup Directory
Configuration screen (Figure 3.1).

 28

Figure 3.1: Configuring the Backup Directory.

3.1.2 Authentication Configuration

Whether you are installing or upgrading the Metacat servlet, you will automatically be
sent to the Authentication Configuration page. You can also reach the Authentication
Configuration page from a running Metacat by typing: http://<your_context_url>/admin

Metacat uses LDAP as its primary authentication mechanism, but you can define your
own authentication mechanism by creating a Java class that implements AuthInterface.
Required configuration values are: Authentication Class, Authentication URL,
Authentication Secure URL, and Metacat Administrators (Figure 3.2). Make sure that
your user account information is entered into the Metacat Administrators field (e.g.,
uid=daigle,o=nceas,dc=ecoinformatics,dc=org). You will not be allowed to
continue with configuration if this is missing.

NOTE: To create an LDAP account on the KNB LDAP server (specified as the default
LDAP server), go to http://knb.ecoinformatics.org and select the "create a new user
account" link.

 29

If you make changes to the authentication settings, you must restart Tomcat to put them
into effect.

Figure 3.2: Configuring Authentication Values.

3.1.3 Changing Authentication Configuration without Authentication

If you need to change or add authentication information and cannot authenticate using the
existing authentication settings (e.g., the existing Metacat administrator is no longer
available or you forgot the administrator password), you must edit the Metacat
configuration file by hand. This ensures that only a person who has access to the Metacat
server and the configuration files on that server will be able to change the administrator
accounts.

To edit the authentication configuration file:

1) Stop Tomcat and edit the Metacat properties (metacat.properties) file in the
Metacat context directory inside the Tomcat application directory. The Metacat
context directory is the name of the application (usually knb):

 30

 <tomcat_app_dir>/<context_dir>/WEB-INF/metacat.properties

2) Change the following properties appropriately:

auth.administrators - a colon separated list of administrators
auth.url - the authentication server URL
auth.surl - the authentication secure server URL

3) Save the metacat.properties file and start Tomcat.

3.2 Logging in to Metacat

In order to configure Metacat, you must log in with an administrative account that has
been configured in the Authentication Configuration settings. If you did not set up the
correct administrative user there, you must change the authentication configuration by
hand before you can log in.

In the log-in screen (Figure 3.3) enter your user name and password and click the "Login"
button.

Figure 3.3: Logging in to Metacat

 31

3.3 Required Configurations

All required Metacat settings can be accessed from the Metacat Configuration utility
(Figure 3.4), which becomes available after the initial configurations have been specified
and an authorized administrator logs in.

Figure 3.4: Required Metacat configurations.

The configuration settings are grouped into five sections (Metacat Global Properties,
Authentication Configuraion, Skins Specific Properties, Database Installation/Upgrade,
Geoserver Configuration), each of which is listed with its current status (Table 3.1)

Status Description
[unconfigured] The section has yet to be configured
[configured] The section has been configured.
[bypassed] Used only for the Geoserver configurations. The administrator

can choose not to configure the Geoserver user/password.
 Table 3.1: Possible configuration statuses.

To the right of each configuration section is one of the following options: Configure
Now, Reconfigure Now, Configure Global Properties First, or Version:X.X.X. If the
option is linked (e.g., Configure Now or Reconfigure Now), you can select the link to
open the associated configuration settings and add or edit them, respectively. If the option

 32

is not linked (e.g., Configure Global Properties First), the settings cannot be specified
until the global properties are set. Once the global properties are configured, the option to
configure this section becomes available. The Version:X.X.X option is used only for the
Database Installation/Upgrade section. If the database schema version detected by
Metacat matches the application version (eg, 1.9.0), then no further database configuration
is required.

All settings must be in a configured or bypassed state in order to run Metacat (Figure
3.5). For new installations or upgrades, click the "go to metacat" link that appears after
configuration is complete to go directly to Metacat. Note that Metacat indexes at start-up
time, so the initial start-up may take some time depending on the amount of data in your
database. If you are reconfiguring a running version of Metacat, you must restart the
Tomcat server for the changes to take effect.

Figure 3.5: The Metacat settings as they appear after configured.

3.3.1 Global Properties (server, ports, etc)

The Metacat configurations included under Global Properties represent the bulk of the
settings required to run Metacat (Figure 3.6). Click a blue question-mark icon beside any

 33

setting for detailed instructions. More information about each property is also included in
the Metacat Properties Appendix.

Figure 3.6: Setting Metacat's Global Properties.

When you save global properties, Metacat also saves a back-up file that is located in
/var/metacat/.metacat (on Linux) or C:\Program Files\metacat\.metacat (on Windows). When you
update Metacat, the system automatically locates the back-up file so you do not have to
re-enter the configuration settings.

The first time you install Metacat, the system attempts to automatically detect the values
for a number of settings (Table 3.2). It is important to ensure that these values are correct.

Property Description
Metacat Context The name of the deployed Metacat WAR file

(minus the .war extension). E.g., "knb"
Server Name The DNS name of the server hosting Metacat, not

including port numbers or the "http://" header.
HTTP Port The non-secure port where Metacat will be

available.
HTTP SSL Port The secure port where Metacat will be available.
Deploy Location The directory where the application is deployed.

Table3.2: Configuration settings that Metacat will automatically detect.

 34

3.3.2 Authentication Configuration

Because you must specify the Authentication settings before you can access the main
configuration page, the settings will always be configured when you view them in the
admin interface. If you wish to change the authentication settings, you must restart
Metacat to put the changes into effect. For more information about the Authentication
configurations, please see Initial Configurations.

3.3.3 Skins Configuration (look & feel)

Customizing the look and feel of Metacat's Web interface is done via skins, which are
applied in the Skins Configuration section. If you have installed the optional Registry,
which provides a Web interface for creating, editing, and submitting content to the
Metacat, you can also choose which form fields appear in that interface and which are
required. Note that if you do not have a custom skin AND you are not using the Registry,
you can simply save the default configuration.

If your Metacat has a customized skin, it will appear as a choice in the Skins
Configuration settings (Figure 3.7). You can creat your own skins as well. For more
information about creating skins, please see Section 3.4.3, Creating a Custom Skin.

Figure 3.7: Configuring Metacat skins.

 35

Select the checkbox next to your customized skin and click the 'Make <skin_name>
default" radio button. If you do not have a custom skin, select the "default" skin. Once
you have selected a skin, Metacat will open a list of options that apply to the Registry
interface (Figure 3.8).

Figure 3.8: Configuring the lists and modules that will be displayed by the Registry.

Select the lists and modules that you would like to appear in the Registry form-interface
by checking the box beside each. When you save the configuration, the customized
interface will appear to site visitors.

3.3.4 Database Configuration

Because the Database Configuration is dependent on values specified in the Global
Configuration section, the link to these settings does not become active until after the
global settings have been saved. Once the global settings have been saved, Metacat
automatically detects the database schema version and upgrades it if necessary (and with
your permission).

• New Installation
• Upgrade

 36

3.3.4.1 New Installation

If Metacat determines that your database is new, the Database Install/Upgrade utility lists
the SQL scripts that will run in order to create a database schema for the new version of
Metacat (Figure 3.9).

If the database is not new, or if you have any questions about whether it is new or not,
choose Cancel and contact support at knb-help@nceas.ucsb.edu.

When you choose Continue, Metacat runs the listed scripts and create the database
schema.

Figure 3.9: Database Install/Upgrade for new databases.

3.3.4.2 Upgrade

If Metacat identifies a previous database schema, the Database Install/Upgrade utility
notes the existing version and lists the SQL scripts that will run in order to update the
schema for the new version of Metacat (Figure 3.10).

If the detected schema version is incorrect, or if you have any questions about whether it
is correct or not, click the Cancel button and contact support at knb-
help@nceas.ucsb.edu.When you choose to continue, Metacat runs the listed scripts and
updates the database schema.

 37

Figure 3.10: Upgrading an existing database.

3.3.5 Geoserver Configuration (Highly Recommended)

Metacat comes bundled with a Web Mapping Service called Geoserver, which converts
spatial data into Web-deliverable map images. Geoserver installs with a default
administrative username and password. We highly recommend that you change the
default credentials so that only local administrators can make changes to your
Geoserver. For more information about Geoserver, see Metacat's use of Geoserver.

When you choose the Geoserver Configuration link from the main configuration screen,
Metacat will prompt you for a few important details about your Geoserver installation.
The data directory and context settings allow Geoserver and Metacat to share the same
spatial data store and render maps within Metacat skins. The security configuration
prompts for a new admin password (Figure 3.11). After you enter the new settings,
Metacat writes the information to the Geoserver deployment.

The default settings are typically appropriate for most Metacat deployments, but if you
wish to skip the Geoserver configuration, click the Bypass button. Geoserver (if
deployed) will remain with a default configuration and the main Metacat configuration
screen will display the "bypassed" status beside the Geoserver settings. You will be able
to run Metacat, but maps will not be rendered.

 38

Figure 3.11: Configuring Geoserver.

Manual Geoserver Update

You can change the Geoserver username and password by directly logging in to the
Geoserver. To configure the credentials manually:

1) Go to the Geoserver admin page: http://<your_context_url>/geoserver/
2) Log in using the default username and password (admin / geoserver)
3) Navigate to the Password Change Page. Enter a new user and password and click

Submit.
4) Click Apply then Save to save your new password.

3.4 Additional Configuration

The most dynamic Metacat properties are managed and modified with the form-based
Metacat Configuration utility. These configuration properties can also be accessed
directly (along with additional static properties) via Metacat's property files:

 39

metacat.properties (which contains global properties, e.g., authorization and database
values) and <SKIN_NAME>.properties (which contains skin-specific properties). Each of
these property files is discussed in more depth in this section.

3.4.1 The metacat.properties file

Metacat's metacat.properties file contains all of Metacat's global properties, both the
dynamic properties, which are managed with theConfiguration utility, as well as the more
static properties, which can only be modified manually in this file. The
metacat.properties file also contains optional properties that are only relevant when
optional Metacat features (such as the harvester or replication) are enabled.

The metacat.properties file is found here:

<CONTEXT_DIR>/WEB_INF/metacat.properties

Where <CONTEXT_DIR> is the directory in which the Metacat application code lives (e.g.,
/usr/share/tomcat5.5/webapps/knb). The path is a combination of the Web
application directory (e.g., /usr/share/tomcat5.5/webapps/) and the Metacat context
directory (e.g., knb). Both values depend upon how your system was set up during
installation.

For information about each property and default or example settings, please see the
Metacat Properties Appendix. Properties that can only be edited manually in the
metacat.properties file are highlighted.

3.4.2 <SKIN_NAME>.properties

The <SKIN_NAME>.properties file contains skin-specific properties (e.g., template
information). For each skin, the skin-specific properties are found here:

<CONTEXT_DIR>/style/skins/<SKIN_NAME>/<SKIN_NAME>.properties

Where <CONTEXT_DIR> is the directory in which the Metacat application code lives
(described above) and <SKIN_NAME> is the name of the skin (e.g., default or nceas)

3.4.3 Creating a Custom Skin

To create and customize your own Metacat skin, you must first create a skin directory.
This is most easily accomplished by copying one of the existing skin directories. Step-by-
step directions for creating and installing a custom skin are included below:

1) Copy an exisiting skin directory. We recommend using the "default" directory.

 40

sudo cp -r <CONTEXT_DIR>/style/skins/default/
<CONTEXT_DIR>/style/skins/[yourSkin]/

Where <CONTEXT_DIR> is the directory in which the Metacat application code
lives and [yourSkin] is the name you wish to apply to your skin.

2) In [yourSkin] directory, change all files named "default.xxx" to "yourSkin.xxx".
The following files should be changed:

default.css
default.js
default.properties
default.properties.metadata.xml
default.xml

3) In the metacat.properties file(<CONTEXT_DIR>/WEB_INF/metacat.properties),

add [yourSkin] to the value of the skin.names property.

4) Restart Tomcat. Log in as the user that runs your Tomcat server (often "tomcat")

and type:

/etc/init.d/tomcat5.5 restart

Navigate to Metacat's Configuration utility and select the Configure Skins option.
Your custom skin should appear as a choice in the skins list. Change the layout and
style by modifying the header, footer, css, and other files in your new skin directory.

It is important to note that all customized skins will be overwritten when Metacat is
reinstalled or upgraded. Please remember to back up your skins before reinstalling
Metacat.

 41

4 Accessing and Submitting Metadata and Data

The Metacat repository can be accessed and updated using a number of tools, including:

• the Registry, Metacat's optional Web interface
• user-created HTML forms
• Metacat's EarthGrid API
• existing clients, such as KNB's Morpho application, designed to help scientists

create, edit, and manage metadata
• user-created desktop clients that take advantage of Metacat's Java API.

In this section, we will look at how to take advantage of these tools to customize Metacat
for your user-base.

4.1 A Brief Note about How Information is Stored

Metacat stores XML files as a hierarchy of nodes, where each node is stored as records in
database tables. Because many XML data schemas are broken up into multiple DTDs
requiring multiple XML files that are related but stored separately in the system, the
system uses "packages" to link related but separate documents. Packaged documents
contain information that shows how they are related to eachother, essentially stating that
file A has a relationship to file B, etc. A package file also allows users to link metadata
files to the data files they describe. For more information about the structure of data
packages and how XML documents and data are stored in Metacat, please see the
developer's documentation.

4.2 Using the Registry

Metacat's optional Registry provides a simple Web-based interface for creating, editing,
and submitting metadata to the Metacat repository (Figure 4.1). The interface includes
help documentation, and can be customized using Metacat's configuration settings. The
Registry also includes an administrative interface for managing LDAP user accounts,
which is useful if you are using LDAP as your Metacat authentication system. Note that
you must be running your own LDAP server if you wish to use the LDAP Web interface.
If you do not have your own LDAP server, you can create and manage new accounts on
the KNB website (http://knb.ecoinformatics.org/). Please note that at this time, the
Registry interface has only been tested on Linux systems.

 42

Figure 4.1: An example installation of the Register's web interface. Customize the displayed and
required modules with the Skins Configuration settings.

You can customize which modules (e.g., "Name of Submitter" or "Temporal Coverage of
Data") are displayed and which are required using the Skins Configuration settings.

4.2.1 Installing the Registry

In order to install and run the Registry, you must have Metacat installed and Tomcat must
be running behind an Apache Web server (see Section 2.2.2.3 for information about
installing and configuring Apache to run with Tomcat).

To install and run the Registry:

1) Build the Metacat Perl client library:

 43

cd $METACAT/src/perl/Metacat
perl Makefile.PL
sudo make
sudo make install

2) Install the required system libraries using Ubuntu/Debian (instructions Red Hat

included beneath Ubuntu/Debian instructions)

a) Install the libraries

sudo apt-get install ant libappconfig-perl libxml-libxml-perl libxml-libxslt-perl libtemplate-perl
libcgi-session-perl libdigest-sha1-perl libnet-ldap-perl libterm-readkey-perl libxml-dom-perl libsoap-
lite-perl -y

b) Install two more package using cpan

sudo cpan -i Config::Properties
sudo cpan -i Scalar::Util

 Instructions for Red Hat (Step 3)

a) Install the libraries

sudo yum install gcc libxml2-devel libxslt-devel ant –y

b) Install CPAN, which allows us to install the Perl dependencies

for the registry and account management parts of Metacat. If
asked to manually configure cpan, type 'no' and CPAN will be
setup with its default values.

sudo yum install perl-CPAN
sudo cpan

c) You should now see a prompt which looks like:

cpan>

d) The rest of the commands assume you're inside of CPAN. Let's get

the most recent version of the CPAN software. Just press return
after any prompts you receive during this process.

install Bundle::CPAN
reload cpan

 44

e) Install the required modules. Here we're installing an old LibXSLT,
as the current one requires a newer libxslt than is available on Redhat
4 & 5. Again, just answer 'yes' to any questions.

install AutoLoader
install CGI
install CGI::SEssion
install LWP::UserAgent
install Net::LDAP
install Template
install URI
install MSERGEANT/XML-LibXSLT-1.58.tar.gz

3) Double-check that Metacat's temporary folder, application.tempDir, is
writable by the apache user, usually www-data or apache.

4) Make sure that the following scripts (found in <tomcat-home>/webapps/knb/cgi-bin) are

executable: register-dataset.cgi and ldapweb.cgi.

sudo chmod +x <tomcat-home>/webapps/knb/cgi-bin/*.cgi

5) Restart Apache.

sudo /etc/init.d/apache2 restart

6) Visit the resulting URL: http://<your_context_url>/cgi-bin/register-dataset.cgi?cfg=default

Where <your_context_url> is the URL of the server hosting the Metacat
followed by the name of the WAR file (i.e., the application context) that you
installed. For instance, the context URL for the KNB Metacat is:
http://knb.ecoinformatics.org/knb.

If everything worked correctly, the registry home page will open (Figure 4.2).

 45

Figure 4.2: An example of the Registry home page (with the default skin).

4.2.2 Customizing the Registry

Before using the registry, you may wish to customize the interface using the Skins
Configuration settings. If you are using the default skin, you must disable the 'show site
list' setting before you can submit the form without errors. You may also wish to remove
(or modify) the list of NCEAS-specific projects that appear in the default registry. To
remove these form fields, open Metacat's administrative interface
(http://<your.context.url>/knb/admin) and select the Skins Specific Properties Configuration
option. On the skins configuration page, uncheck the boxes beside any form elements that
you do not wish to appear in the registry (Figure 4.3).

 46

Once you have saved your changes, you must restart Tomcat for them to come into
effect. To restart Tomcat, log in as the user that runs your Tomcat server (often "tomcat")
and type: /etc/init.d/tomcat5.5 restart or an equivalent command appropriate to
your operating system.

Figure 4.3: Uncheck the box beside any setting to remove it from the Registry form. In the example,
the "Show Site List" and "Show Work Group" form fields, corresponding to the "Station Name"
and "NCEAS Project" drop-down lists in the registry form, have been removed.

4.3 Using HTML Forms (the HTTP Interface)

Metacat's HTTP interface supports Get and Post requests and a variety of actions (Table
4.1) that facilitate information retrieval and storage. HTTP requests can be sent from any
client application that communicates using the Web's HTTP protocol.

• Supported Actions (API)
• Logging in
• Inserting, Updating, and Deleting XML and Data Documents

 47

• Searching Metacat
• Paged Query Return
• Reading Data and Metadata

4.3.1 Supported Actions

Metacat supports get and post requests as well as actions for writing, querying, and
reading stored XML. In addition, the HTTP interface includes functions for validating
and transforming XML documents (Table 4.1).

Note that if Replication is enabled, Metacat recognizes several additional actions,
included in Table 4.2. For more information about replication, please see the Replication
section.

Actions Supported by the Metacat Servlet
Action Description and Parameters
delete Delete the specified document from the database. For an

example, please see Inserting, Updating, and Deleting XML
and Data Documents.

docid - the docid of the document to delete

export Export a data package in a zip file.

docid - the docid of the package you wish to export

getaccesscontrol Get the access control list (ACL) for the specified
document.

docid - the docid of the document for which to get the ACL

getalldocids Retrieve a list of all docids registered with the system.

scope - a string used to match a range of docids in a SQL LIKE
statement.

getdataguide
DEPRECATED
Use getdtdschema
instead.

Read a data guide for the specified document type.

doctype - the doctype for which to get the data guide

getdoctypes Get all doctypes currently available in the Metacat Catalog
System. No parameters

getdtdschema Read the DTD or XMLSchema file for the specified
doctype.

doctype - the doctype for which DTD or XMLSchema files to read.

 48

getlastdocid Get the latest docid with revision number used by user.

username - the user's log-in name

getlog Print a report from the Metacat event log.

ipaddress - the internet protocol address for the event

principal - the principal for the event (a username, etc)

docid - the identifier of the document to which the event applies

event - the string code for the event

start - beginning of date-range for query

end - end of date-range for query

getloggedinuserinfo Get user info for the currently logged in user. No
parameters.

getprincipals Get all users and groups in the current authentication
schema. No parameters.

getrevisionanddoctype Return the revision and doctype of a document. The output
is String that looks like "rev;doctype"

docid - the docid of the document.

getversion - get
Metacat version.

Return the current version of Metacat as XML. No
parameters.

insert Insert an XML document into the database. For an example,
please seeInserting, Updating, and Deleting XML and Data
Documents

docid - the user-defined docid to assign to the new XML document.
doctext - the text of the XML document to insert

insertmultipart Insert an XML document using multipart encoding into the
database.

docid - the user-defined docid to assign to the new XML document.
doctext - the text of the XML document to insert

isregistered Check if an individual document exists in either the
xml_documents or xml_revisions tables. For more
information about Metacat's database schema, please see the
developer documentation.

docid - the docid of the document.

 49

login Log the user in. You must log in using this action before
you can perform many of the actions. For an example of the
login action, see Logging In.

username - the user's login name

password - the user's password

logout Log the current user out and destroy the associated session.
No parameters

query Perform a free text query. For an example, please see
Searching Metacat

returndoctype - the doctype to use for your Package View. For
more information about packages, see
http://knb.ecoinformatics.org/software/metacat/packages.html

qformat - the format of the returned result set. Possible values are
html or xml or the name of your servlet's Metacat skin.

querytitle - OPTIONAL - the title of the query

doctype - OPTIONAL - if doctype is specified, the search is limited
only to the specified doctype(s). (e.g., eml://ecoinformatics.org/eml-
2.0.1 and/or eml://ecoinformatics.org/eml-2.0.0) If no doctype element
is specified, all document types are returned

returnfield - a custom field to be returned by any hit document.

operator - the Boolean operator to apply to the query. Possible
values are: union or intersect

searchmode - the type of search to be performed. Possible values are:
contains, starts-with, ends-with, equals, isnot-equal, greater-than, less-
than, greater-than-equals, less-than-equals.

anyfield - a free-text search variable. The value placed in this
parameter will be searched for in any document in any node.

pagesize – the number of search results to display on each search
results page (e.g., 10). Used with pagestart. See section 4.3.4 for an
example.

pagestart – the displayed search results page (e.g, 1). Used with
pagesize. See section 4.3.4 for an example.

read Get a document from the database and return it in the
specified format. See Searching Metacat for an example.

docid - the docid of the document to return
qformat - the format to return the document in. Possible values are:
html, xml,or, if your Metacat uses a skin, the name of the skin.

 50

readinlinedata Read inline data only.

inlinedataid - the id of the inline data to read

setaccess Change access permissions for a user on a specified
document.

docid - the docid of the document to be modified.

principal - the user or group whose permissions will be modified

permission - the permission to set (read, write, all)

permType - the type of permission to set (allow, deny)

permOrder - the order in which to apply the permission
(allowFirst, denyFirst)

spatial_query Perform a spatial query. These queries may include any of
the queries supported by the WFS / WMS standards. For
more information, see Spatial Queries.

xmax - max x spatial coordinate
ymax - max y spatial coordinate
xmin - min x spatial coordinate
ymin - min y spatial coordinate

squery Perform a structured query. For an example, please see
Searching Metacat.

query - the text of the pathquery document sent to the server

update Overwrite an XML document with a new one and give the
new one the same docid but with the next revision number.
For an example, please see Inserting, Updating, and
Deleting XML and Data Documents.

docid - the docid of the document to update
doctext - the text with which to update the XML document

upload Upload (insert or update) a data file into Metacat. Data files
are stored on Metacat and may be in any format (binary or
text), but they are all treated as if they were binary.

docid - the docid of the data file to upload
datafile - the data file to upload

validate Validate a specified document against its DTD.

docid - the docid of the document to validate
valtext - the DTD by which to validate this document

Table 4.1 Supported actions and associated parameters.

 51

Metacat Replication Parameters
Action Description and Parameters
forcereplicate Force the local server to get the specified document from the

remote host.

server - The server to which this document is being sent
docid - The docid of the document to send
dbaction - The action to perform on the document: insert or update
(the default)

getall Force the local server to check all known servers for updated
documents. No parameters.

getcatalog Send the contents of the xml_catalog table encoded in XML.
No parameters.

getlock Request a lock on the specified document.

docid - the docid of the document
updaterev - the revision number of docid

gettime Return the local time on this server. No parameters.

servercontrol Perform the specified replication control on the Replication
daemon.

add - add a new server to the replication list
delete - remove a server from the replication list
list - list all of the servers currently in the server list
replicate - a Boolean flag (1 or 0) which determines if this server should
copy files from the newly added server.
server - the server to add/delete

read Sends docid to the remote host.

docid - the docid of the document to read

start Start the Replication daemon with a time interval of deltaT.

rate - The rate (in seconds) at which you want the replication daemon to
check for updated documents. The value cannot be less than 30. The default is
1000

stop Stop the Replication daemon. No parameters.

update Send a list of all documents on the local server along with their
revision numbers. No parameters.

Table 4.2 Supported actions when Replication is enabled.

 52

4.3.2 Logging In

To log in to Metacat, use the login action.

The following is an example of a Web form (Figure 4.4) that logs a user into Metact.
Example HTML code is included below the screenshot (Figure 4.5).

Figure 4.4: Logging in to Metacat using an HTML form.

<body>
 <form name="loginform"
method="post"action="http://yourserver.com/yourcontext/servlet/metacat"
 target="_top" onsubmit="return submitform(this);" id="loginform">
 <input type="hidden" name="action" value="login"> <input type=
 "hidden" name="username" value=""> <input type="hidden" name=
 "qformat" value="xml"> <input type="hidden" name=
 "enableediting" value="false">

 <table>
 <tr valign="middle">
 <td align="left" valign="middle" class="text_plain">
 username:</td>

 <td width="173" align="left" class="text_plain" style=
 "padding-top: 2px; padding-bottom: 2px;"><input name="uid"
 type="text" style="width: 140px;" value=""></td>
 </tr>

 <tr valign="middle">
 <td height="28" align="left" valign="middle" class=
 "text_plain">organization:</td>

 <td align="left" class="text_plain" style=

 53

 "padding-top: 2px; padding-bottom: 2px;"><select name=
 "organization" style="width:140px;">
 <option value="" selected>— choose one
—</option>
 <option value="NCEAS">NCEAS</option>
 <option value="LTER">LTER</option>
 <option value="UCNRS">UCNRS</option>
 <option value="PISCO">PISCO</option>
 <option value="OBFS">OBFS</option>
 <option value="OSUBS">OSUBS</option>
 <option value="SAEON">SAEON</option>
 <option value="SANParks">SANParks</option>
 <option value="SDSC">SDSC</option>
 <option value="KU">KU</option>
 <option value="unaffiliated">unaffiliated</option>
 </select></td>
 </tr>

 <tr valign="middle">
 <td width="85" align="left" valign="middle" class=
 "text_plain">password:</td>

 <td colspan="2" align="left" class="text_plain" style=
 "padding-top: 2px; padding-bottom: 2px;">
 <table width="100%" border="0" cellpadding="0"
 cellspacing="0">
 <tr>
 <td width="150" align="left"><input name="password"
 type="password" maxlength="50" style="width:140px;"
 value=""></td>

 <td align="center" class="buttonBG_login">
 <input type="submit" name="loginAction" value="Login"
 class="button_login"></td>

 <td align="left"> </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>
Figure 4.5: HTML code used to generate the log-in form in Figure 4.4

4.3.3 Inserting, Updating, and Deleting XML and Data Documents

Adding, editing, and deleting XML documents in Metacat can be accomplished using the
insert, update, and delete actions, respectively. Before you can insert, delete, or
update documents, you must log in to Metacat using the login action. See Logging in for
an example.

 54

insert: Insert a new XML or data document into Metacat. You must specify a

document ID.

update: Update an existing Metacat document. The original document is archived,

then overwritten.

delete: Archive a document and move the pointer in xml_documents to
xml_revisions, effectively "deleting" the document from public view, but
preserving the revision for the revision history.

The following is an example of a Web form (Figure 4.6) that can perform all three tasks.
Example HTML code is included below the screenshot (Figure 4.7).

Figure 4.6: An example of a Web form used to insert, delete, or update XML documents in Metacat.

 55

<html>
 <head>
 <title>MetaCat</title>
 </head>
 <body class="emlbody">
 MetaCat XML Loader
 <p>
 Upload, Change, or Delete an XML document using this form.
 </p>
 <form action="http://yourserver.com/yourcontext/servlet/metacat"
method="POST">
 1. Choose an action:
 <input type="radio" name="action" value="insert" checked> Insert
 <input type="radio" name="action" value="update"> Update
 <input type="radio" name="action" value="delete"> Delete
 <input type="submit" value="Process Action">

 2. Provide a Document ID
 <input type="text" name="docid"> (optional for Insert)
 <input type="checkbox" name="public" value="yes"
checked>Public Document

 3. Provide XML text (not needed for
Delete)

 <textarea name="doctext" cols="65" rows="15"></textarea>

 4. Provide DTD text for upload (optional; not
needed for Delete)
 <textarea name="dtdtext" cols="65" rows="15"></textarea>
 </form>
 </body>

 </html>
Figure 4.7: HTML code used to generate the form in Figure 4.6.

4.3.4 Searching Metacat

To search Metacat use the query or squery actions.

query: Perform a free text query. Specify the returndoctype, qformat, returnfield,

operator, searchmode, anyfield, and (optionally) a querytitle and doctype.

squery: Perform a structured query by submitting an XML pathquery document to
the Metacat server.

When Metacat receives a query via HTTP (Figure 4.8), the server creates a "pathquery"
document, which is an XML document populated with the specified search criteria
(Figure 4.10). The pathquery document is then translated into SQL statements that are
executed against the data base. Results are translated into an XML "resultset" document,
which can be returned as XML or transformed into HTML and returned (specify which
you would prefer with the returnfield parameter). You can also opt to submit a
pathquery document directly, using an squery action.

 56

Figure 4.8: Example of a basic search form using a query action. The HTML code used to create the
form is displayed in Figure 4.9.

<html>
<head>
<title>Search</title>
</head>
<body>
<form method="POST" action="http://panucci.nceas.ucsb.edu/knb/servlet/metacat">

Search for:

 <input name="action" value="query" type="hidden">

 <input name="operator" value="INTERSECT" type="hidden">

 <input name="anyfield" type="text" value=" " size="40">

<input name="qformat" value="html" type="hidden">

<input name="returnfield" value="creator/individualName/surName" type="hidden">

<input name="returnfield" value="creator/individualName/givenName"
type="hidden">

 <input name="returnfield" value="creator/organizationName" type="hidden">

 <input name="returnfield" value="dataset/title" type="hidden">

 <input name="returnfield" value="keyword" type="hidden">

 <input name="returndoctype" value="eml://ecoinformatics.org/eml-2.0.1"
type="hidden">

 <input value="Start Search" type="submit">

</form>
</body>
</html>
Figure 4.9: HTML form code that generates the search form displayed in Figure 4.8.

 57

Metacat's pathquery document can query specific fields of any XML document. The
pathquery can also be used to specify which fields from each hit are returned and
displayed in the search result set (Figure 4.10)

<pathquery version="1.0">
 <meta_file_id>unspecified</meta_file_id>
 <querytitle>unspecified</querytitle>
 <returnfield>dataset/title</returnfield>
 <returnfield>keyword</returnfield>
 <returnfield>originator/individualName/surName</returnfield>
 <returndoctype>eml://ecoinformatics.org/eml-2.0.1</returndoctype>
 <returndoctype>eml://ecoinformatics.org/eml-2.0.0</returndoctype>
 <querygroup operator="UNION">
 <queryterm casesensitive="false" searchmode="contains">
 <value>Plant</value>
 <pathexpr>dataset/title</pathexpr>
 </queryterm>
 <queryterm casesensitive="false" searchmode="contains">
 <value>plant</value>
 <pathexpr>keyword</pathexpr>
 </queryterm>
 </querygroup>
 </pathquery>

Figure 4.10: An example of a pathquery document

Each <returnfield> parameter specifies a field that the data base will return (in
addition to the fields Metacat returns by default) for each search result.

The <returndoctype> field limits the type of returned documents
(eg, eml://ecoinformatics.org/eml-2.0.1 and/or eml://ecoinformatics.org/eml-2.0.0).
If no returndoctype element is specified, all document types are returned.

A <querygroup> creates an AND or an OR statement that applies to the nested
<queryterm> tags. The querygroup operator can be UNION or INTERSECT. A
<queryterm> defines the actual field (contained in <pathexpr> tags) against which the
query (contained in the <value> tags) is being performed.

The <pathexpr> can also contain a document type keyword contained in <returndoc>
tags. The specified document type applies only to documents that are packaged together
(e.g., a data set and its corresponding metadata file). If Metacat identifies the search term
in a packaged document, the servlet will check to see if that document's type matches the
specified one. If not, Metacat will check if one of the other documents in the package
matches. If so, Metacat will return the matching document. For more information about
packages, please see the developer documentation.

After Metacat has processed a Pathquery document, it returns a resultset document
(Figure 4.11)

 58

 <resultset>
 <query>
 <pathquery version="1.0">
 <meta_file_id>unspecified</meta_file_id>
 <querytitle>unspecified</querytitle>
 <returnfield>dataset/title</returnfield>
 <returnfield>keyword</returnfield>

<returnfield>originator/individualName/surName</returnfield>
 <returndoctype>eml://ecoinformatics.org/eml-
2.0.1</returndoctype>
 <returndoctype>eml://ecoinformatics.org/eml-
2.0.0</returndoctype>
 <querygroup operator="UNION">
 <queryterm casesensitive="false"
searchmode="contains">
 <value>Datos</value>
 <pathexpr>dataset/title</pathexpr>
 </queryterm>
 <queryterm casesensitive="false"
searchmode="contains">
 <value>plant</value>
 <pathexpr>keyword</pathexpr>
 </queryterm>
 </querygroup>
 </pathquery>
 </query>

 <document>
 <docid>nceas.44.1</docid>
 <docname>resource</docname>
 <doctype>eml://ecoinformatics.org/eml-2.0.1</doctype>
 <createdate>2001-01-12 16:12:06.0</createdate>
 <updatedate>2001-01-12 16:12:06.0</updatedate>
 <param name="dataset/title">Datos Meteorologicos</param>
 <param name="keyword">intertidal</param>
 <param name="originator/individualName/surName">Smith</param>
 </document>

 <document>
 <docid>nceas.42.1</docid>
 <docname>resource</docname>
 <doctype>eml://ecoinformatics.org/eml-2.0.1</doctype>
 <createdate>2001-01-12 16:11:31.0</createdate>
 <updatedate>2001-01-12 16:11:31.0</updatedate>
 <param name="dataset/title">Ocean Surface Temperature</param>
 <param name="keyword">Plant</param>
 <param name="originator/individualName/surName">Henry</param>
 </document>

 </resultset>

Figure 4.11: An example of a resultset document.

 59

When Metacat returns a resultset document, the servlet always includes the pathquery
used to create it. The pathquery XML is contained in the <query> tag, the first element in
the resultset.

Each XML document returned by the query is represented by a <document> tag. By
default, Metacat will return the docid, docname, doctype, doctitle, createdate
and updatedate for each search result. If the user specified additional return fields in the
pathquery using <returnfield> tags (e.g., dataset/title to return the document
title), the additional fields are returned in <param> tags.

Metacat can return the XML resultset to your client as either XML or HTML.

4.3.5 Paged Query Return

Dividing large search result sets over a number of pages speeds load-time and makes the
result sets more readable to users (Figure 4.12). To break your search results into pages,
use the query action's optional pagestart and pagesize parameters. The pagesize
parameter indicates how many results should be returned for a given page. The
pagestart parameter indicates which page you are currently viewing.

Figure 4.12: An example of paged search results.

When a paged query is performed, the query's resultset contains four extra fields:
pagestart, pagesize, nextpage, and previouspage (Figure 4.13). The nextpage
and previouspage fields help Metacat generate navigational links in the rendered
resultset using XSLT to transform the XML to HTML.

 <resultset>
 <pagestart>1</pagestart>
 <pagesize>10</pagesize>
 <nextpage>2</nextpage>
 <previouspage>0</previouspage>
 <query> ...</query>
 <document>...</document>
 <document>...</document>
 </resultset>
Figure 4.13: An example of an XML resultset that include support for page breaks. The pagestart
parameter will always indicate the page you are currently viewing.

 60

The HTML search results displayed in Figure 4.12 were rendered using Kepler's XSLT,
which can be found in lib/style/skins/kepler. Kepler's XSLT uses the four extra
resultset fields to render the "Next" and "Previous" links (Figure 4.14).

<a href="metacat?action=query&operator=INTERSECT&enableediting=false&anyfield=actor&
qformat=kepler&pagestart=0&pagesize=10">Previous Page

 <a
href="metacat?action=query&operator=INTERSECT&enableediting=false&anyfield=actor&qformat
=kepler&pagestart=2&pagesize=10">Next Page
Figure 4.14: The HTML Next and Previous links generated by Metacat using Kepler's XSLT.

In the example in Figure 4.14, the current page is 1, and the previous page (page 0) and
next page (page 2) pages are indicated by the values of the pagestart parameters.

4.3.6 Reading Data and Metadata

To read data or metadata from Metacat, use the read action. The read action takes two
parameters: docid, which specifies the document ID of the document to return, and
qformat, which specifies the return format for the document (html or xml or the name
of a configured style-set, e.g., default). If qformat is set to xml, Metacat will return
the XML document untransformed. If the return format is set to html, Metacat will
transform the XML document into HTML using the default XSLT style sheet (specified
in the Metacat configurations). If the name of a style-set is specified, Metacat will use
the XSLT styles specified in the set to transform the XML (Figure 4.15).

Figure 4.15: The same document displayed using different qformat parameters (from left to right:
the default style-set, XML, and HTML)

 61

Note that the read action can be used to read both data files and metadata files. To read a
data file, you could use the following request:

http://yourserver.com/yourcontext/metacat?action=read&docid=nceas.55&qformat=default

Where nceas.55 is the docid of the data file stored in the Metacat and default is the
name of the style (you could also use "html" or "xml" or the name of a customized skin).

<html>
<head>
<title>Read Document</title>
</head>
<body>
<form method="POST" action="http://your.server/your.context/servlet/metacat">
<input name="action" value="read" type="hidden">
<input name="docid" type="text" value="" size="40">
<input name="qformat" value="default" type="hidden">
 <input value="Read" type="submit">
</form>
</body>
</html>

4.4 Using the EarthGrid API

The EarthGrid provides access to disparate data on different networks (e.g., KNB, GBIF,
GEON) and storage systems (e.g., Metacat and SRB), allowing scientists access to a wide
variety of data and analytic resources (e.g., data, metadata, analytic workflows and
processors) networked at different sites and at different organizations via the internet.

Because Metacat supports the EarthGrid API (Table 4.3), it can query the distributed
EarthGrid, retrieve metadata and data results, and write new and updated metadata back
to the grid nodes.

For more information about each EarthGrid service and its WSDL file, navigate to the
"services" page on your Metacat server (e.g., http://knb.ecoinformatics.org/knb/services).
Note that the AdminService and Version service that appear on this page are not part of
EarthGrid.

The EarthGrid API

Service Description
AuthenticationQueryService Search for and retrieve protected metadata and

data from the EarthGrid as an authenticated
user.

Methods: query, get

AuthenticationService Log in and out of the EarthGrid
Methods: login, logout

 62

IdentifierService List, lookup, validate, and add Life Science
Identifiers (LSIDs) to the EarthGrid

Methods: isRegistered, addLSID,
getNextRevision, getNextObject,
getAllIds

PutService Write metadata to the EarthGrid
Methods: put

QueryService Search for and retrieve metadata from the
EarthGrid
Methods: query, get

RegistryService Add, update, remove, and search for registered
EarthGrid services. Note: The WSDL for this
service is found under
http://ecogrid.ecoinformatics.org/registry/services

Methods: add, update, remove, list,
query

Table 4.3: The EarthGrid API

4.5 Using Morpho

Morpho is a desktop tool created for ecologists to facilitate the creation, storage, and
retrieval of metadata. Morpho interfaces with any Metacat server, allowing users to
upload, download, store, query and view relevant metadata and data using the network.
Users can authorize the public or only selected colleagues to view their data files.

Figure 4.16: Set the Metacat URL in the Morpho preferences
to point to your Metacat.

Morpho is part of the
Knowledge Network for
Biocomplexity (KNB), a
national network intended to
facilitate ecological and
environmental research on
biocomplexity. To use Morpho
with your Metacat, set the
Metacat URL in the Morpho
Preferences to point to your
Metacat server (Figure 4.16)

For more information about
Morpho, please see:
http://knb.ecoinformatics.org/morp
hoportal.jsp

 63

4.6 Creating Your Own Client

Metacat's client API is available in Java and Perl (the Java interface is described in this
section and further detailed in the appendix). Some of the API is also available in Python
and Ruby. The API allows client applications to easily authenticate users and perform
basic Metacat operations such as reading metadata and data files; inserting, updating,
and deleting files; and searching for packages based on metadata matches.

The Client API is defined by the interface edu.ucsb.nceas.metacat.client.Metacat, and
all operations are fully defined in the javadoc documentation. To use the client API,
include the metacat-client.jar, utilities.jar, and httpclient.jar in your
classpath. After including these classes, you can begin using the API methods (Table
4.4).

Figure 4.17 displays a typical session for reading a document from Metacat.

String metacatUrl = "http://foo.com/context/metacat";
 String username = "uid=jones,o=NCEAS,dc=ecoinformatics,dc=org";
 String password = "neverHarcodeAPasswordInCode";
 try {
 Metacat m =
MetacatFactory.createMetacatConnection(metacatUrl);
 m.login(username, password);
 Reader r = m.read("testdocument.1.1");
 // Do whatever you want with Reader r
 } catch (MetacatAuthException mae) {
 handleError("Authorization failed:\n" + mae.getMessage());
 } catch (MetacatInaccessibleException mie) {
 handleError("Metacat Inaccessible:\n" + mie.getMessage());
 } catch (Exception e) {
 handleError("General exception:\n" + e.getMessage());
 }
Figure 4.17: A typical session for reading a document from Metacat.

Operations provided by Client API (metacat.java class)
Method Parameters and Throws Description
delete public String delete(String docid) throws

InsufficientKarmaException,
MetacatException,
MetacatInaccessibleException;

Delete an XML
document in the
repository.

getAllDocids public Vector getAllDocids(String scope)
throws MetacatException;

Return a list of all
docids that match a
given scope. If scope is
null, return all docids
registered in the
system.

 64

getLastDocid public String getLastDocid(String scope)
throws MetacatException;

Return the highest
document ID for a
given scope. Used by
clients to determine the
next free identifier in a
sequence for a given
scope.

getloggedinuse
rinfo

public String getloggedinuserinfo() throws
MetacatInaccessibleException;

Return the logged in
user for this session.

getNewestDoc
Revision

public int getNewestDocRevision(String
docId) throws MetacatException;

Return the latest
revision of specified
the document from
Metacat

getSessonId public String getSessionId(); Return the session
identifier for this
session.

insert public String insert(String docid, Reader
xmlDocument, Reader schema) throws
InsufficientKarmaException,
MetacatException, IOException,
MetacatInaccessibleException;

Insert an XML
document into the
repository.

isRegistered public boolean isRegistered(String docid)
throws MetacatException; Return true if given

docid is registered;
false if not.

login public String login(String username, String
password) throws MetacatAuthException,
MetacatInaccessibleException;

Log in to a Metacat
server.

logout public String logout() throws
MetacatInaccessibleException,
MetacatException;

Log out of a Metacat
server.

query public Reader query(Reader xmlQuery) throws
MetacatInaccessibleException, IOException;

Query the Metacat
repository and return
the result set as a
Reader.

query public Reader query (Reader xmlQuery,
String qformat) throws
MetacatInaccessibleException,
 IOException;

Query the Metacat
repository with the
given metacat-
compatible query
format and return the
result set as a Reader.

read public Reader read(String docid) throws
InsufficientKarmaException,
MetacatInaccessibleException,
DocumentNotFoundException,
MetacatException;

Read an XML
document from the
Metacat server.

 65

readInlineData public Reader readInlineData(String
inlinedataid) throws
InsufficientKarmaException,
MetacatInaccessibleException,
MetacatException;

Read inline data from
the Metacat server
session.

setAccess public String setAccess(String _docid,
String _principal, String _permission,
String _permType, String _permOrder);
throws InsufficientKarmaException,
MetacatException,
 MetacatInaccessibleException;

Set permissions for an
XML document in the
Metacat repository.

setMetacatUrl public void setMetacatUrl(String
metacatUrl);

Set the MetacatUrl to
which connections
should be made.

setSessionId public void setSessionId(String sessionId); Set the session
identifier for this
session.

update public String update(String docid, Reader
xmlDocument, Reader schema) throws
InsufficientKarmaException,
MetacatException, IOException,
MetacatInaccessibleException;

Update an XML
document in the
repository by
providing a new
version of the XML
document.

upload public String upload(String docid, File
file) throws InsufficientKarmaException,
MetacatException, IOException,
MetacatInaccessibleException;

Upload a data
document into the
repository.

upload public String upload(String docid, String
fileName, InputStream fileData, int size)
throws InsufficientKarmaException,
MetacatException, IOException,
MetacatInaccessibleException;

Upload a data
document into the
repository.

Table 4.4: Operations provided by client API. For more information, please see either the javadocs.

 66

5 Metacat's Use of GeoServer

GeoServer 2.0.2, an open source Web Mapping Service (WMS) written in Java, is
bundled with Metacat and can be used to render spatial data as web-deliverable maps
(Figure 5.1). Metacat uses OpenLayers (http://openlayers.org/) to provide a web-based
user interface for interacting with the generated maps. You can use any WMS-compatible
client (e.g., ArcGIS, QGIS, JUMP, UDig, OpenLayers, Mapbender, Map Builder).

IMPORTANT: Regardless of whether you plan on using the mapping functionality you
should, for security purposes, configure GeoServer so that it doesn't use the default
password. For instructions, please see Geoserver Configuration.

Figure 5.1: A map generated by Metacat's GeoServer. Points and "bounding boxes" represent the
geographic extent of datasets stored in the KNB Metacat repository.

GeoServer supports a wide variety of vector GIS data sources, which can be styled using
Styled Layer Descriptors (SLDs) and output as images (the default) or raw vector data
(GML or KML).

Currently, GeoServer can be used with the following limitations:

• GeoServer will only map documents that are publicly available. This is because
the mapping server's support for permissions control is not as fine-grained as
Metacat's.

Metacat developers plan to continue extending and improving Metacat's mapping
capabilities. If you are interested in contributing to those efforts, or if you are interested
in learning more about the architecture and future plans for the mapping software, please
contact the Metacat development team (metacat-dev@ecoinformatics.org).

 67

5.1 Installing and Configuring

The GeoServer webapp should be installed as a sibling of Metacat. If you do NOT wish
to run GeoServer, the deployment can be skipped, but any skins that use maps will not
render correctly.

Metacat comes with a pre-configured data directory to be used by GeoServer. This
includes a world-countries base layer and a default configuration that is already aware of
Metacat's spatial cache. The Metacat configuration interface is used to configure
GeoServer to use this shared data directory. To further configure GeoServer, use the
Web-based configuration utility (Figure 5.2), which is available at:
http://your.server.com/<geoserver_context> (e.g., http://knb.ecoinformatics.org/geoserver).

Common configuration tasks include:

• Adding a Map to a Web Page or Skin
• Configuring the Size and Initial Extent of the Map
• Configuring the Layout of the HTML Mapping Interface
• Configuring the "Select Location" Drop-down Menu
• Configuring the Visual Portrayal of Geospatial Data (e.g., symbology and color)
• Adding Other Spatial Datasets to the Web Map

Figure 5.2: GeoServer's Web-based administrative interface.

OpenLayers, which Metacat uses as the front-end for GeoServer's WMS service, provides
interface components or "widgets" (e.g., the map, a box zoom, layer list, "Select
Location" drop-down menu, scale bar, lat/long coordinates, and a query form) that make
it easy to deploy web-based mapping applications with minimal coding.

 68

OpenLayers has three main configuration files used to customize the map interface
(Table 5.1). Default configurations are in:

$METACAT/lib/style/common/spatial/

Document Location Description
The named location file locations.jsp The list of pre-defined

locations (name and lat/lon
bounds)

Main map rendering
functions

map.js Defines the map, widgets
and their behavior

The rendered map and page
layout

map.jsp Loads the map and controls
the HTML layout of the
widgets.

Table 5.1: The main configuration files used to configure the mapping user interface. The default
configuration files are located in $METACAT/lib/style/common/spatial/

NOTE: By default, the first time Metacat is restarted, it generates a "spatial cache"
containing geographic information about documents in its repository. This default
behavior is specified in lib/metacat.properties, where the regenerateCacheOnRestart
parameter is set to true. The information in the spatial cache is stored in a GIS-
compatible format (the ESRI Shapefile) and consists of the document name and its
geographic coverage. When documents are inserted, deleted, and updated in the Metacat
repository, Metacat automatically syncs the spatial cache to reflect the changes. Because
generating the cache can take a considerable amount of time (several minutes in the case
of a few thousand documents), Metacat resets the regenerateCacheOnRestart property to
false after the spatial cache has been generated. Note that if you upgrade or reinstall
Metacat, the spatial cache will be regenerated again.

5.1.1 Adding a Map to a Web Page or Skin

To add a map to a Web page, simply include the map interface using an iframe:

 <iframe scrolling="no" frameborder="0" width="780" height="420"
 src="/knb/style/common/spatial/map.jsp">
 </iframe>

The map URL, /knb/style/common/spatial/map.jsp, is the default map interface. If
you plan to customize the map interface, copy the map.jsp file into your skin's directory
(either the default or customized skin directory).

cp -r style/common/spatial/map.jsp /style/skins/<myskin>/spatial

You can access the customized map with the URL:
/knb/style/skins/<myskin>/spatial/map.jsp

 69

5.1.2 Configuring the Size and Initial Extent of the Map

Before you configure the size and initial extent of the map, make sure that you have
copied the map layout page into your skin's directory (See section 5.1.1 for directions).
Once the file has been copied, you can modify the map's initial extent in:
${skin.dir}/spatial/map.jsp.

To change the map’s initial extent, edit the bounding box. The default is to show the
entire globe. The initMap() function should also be given the skin name so that spatial
search results can be correctly styled.

<script type="text/javascript">
 function init() {
 var bounds = new OpenLayers.Bounds(-180,-90,180,90);
 // make the map for this skin
 initMap("<%=GEOSERVER_URL%>", "<%=SERVLET_URL%>",
"default", bounds);
 }
 </script>

The size (height/width) of the map can be controlled by the #map CSS entry included in
the map.jsp page.

5.1.3 Configuring the Layout of the HTML Mapping Interface

The size and initial extent of the map can be edited in : ${skin.dir}/spatial/map.jsp.

The map.jsp is a simple container that can be included in other more complex pages if
desired. It contains the map, widgets and location dropdown list.

5.1.4 Configuring the "Select Location" Drop-down Menu

The locations that appear in the "Select Location" drop-down menu are specified in the
locations.jsp file. The locations.jsp can be copied from the common spatial
template into your skin directory. Each location is defined as an HTML <option/> tag.
Edit the value and label to edit or add new locations.

<option value=“-149.725,68.475 -149.3254,68.725”>
 Arctic LTER (ARC)
</option>

5.1.5 Configuring the Visual Portrayal of Geospatial Data (e.g.,
symbology and color)

 70

Geospatial data sets are styled through the use of Styled Layer Descriptors (SLD). The
default SLDs used for the data points and data bounding boxes are in
 /lib/spatial/geoserver/data/styles/ and are named data_points_style.sld
and data_bounds_style.sld, respectively.

You can find a more detailed tutorial on using SLD with GeoServer in the GeoServer
documentation: http://docs.geoserver.org/.

5.1.6 Adding Other Spatial Datasets to the Web Map

If you have vector GIS data sets, such as weather or topographical information, on your
server that you'd like to include in the interactive map, you must first register the data set
with GeoServer. After the data set has been registered, you can add the layer to the map.
You can also add spatial layers that have been made publically available through WMS
(There are hundreds of spatial data sets available. Check out wms-sites.com for good
catalog). Instructions for adding publically available layers are included at the end of this
section.

To register the data set and add it to the map:

1) Point your browser to http://your.server/geoserver, log in to GeoServer, and navigate
to the "Data Stores" configuration page under Data > Stores.

2) Create a new vector data source from a Shapefile in the “metacat” workspace

(Figure 5.3).

 71

Figure 5.3: Creating a new shapefile using GeoServers web-based
administrative interface.
3) Point to the GIS data file on the file system. Use an absolute path or a relative to

the GeoServer data directory that is configured in Metacat.

The Description, if specified, is mostly used internally to provide other
administrators with information about the Data Store. Click Submit.

4) Navigate to the "Layers" configuration page under Data > Layers. Add a new

Layer from your new data source.

5) You should also define a spatial reference system (SRS) number for the new

layer. Most lat/long data is "4326". If your data is in another projection, determine
its spatial reference system using the help links provided (Figure 5.4).

 72

Figure 5.4: GeoServer's FeatureType configuration. The SRS settings discussed in step 5 are
highlighted.

6) Style the layer using a style from the drop-down menu on the Publishing tab, or

create a new SLD to create a new style object and corresponding SLD (this option
provides more control over the style).

7) Try out the styled data set as a WMS layer using a the Layer Preview (Figure 5.5)

 73

Figure 5.5: GeoServer's Layer Preview allows you to see an OpenLayer rendering of the new
layer.

8) Copy the default map.js file that assembles the map in OpenLayers

(style/common/spatial/map.js) to your skin’s spatial directory.

9) Edit the init() method to include your new layer in the map – either as an overlay

or as a base layer.

10) Point your browser to the map interface. Your new layer should appear with the

existing ones.

Adding External Spatial Data Made Publically Available through WMS

There are hundreds of sources of spatial data made publically available through WMS.
(check out wms-sites.com for good catalog). To add these data sources to your map, add
the layers in your skin’s spatial/map.js file.

5.2 Spatial Queries

To find out which documents in the Metacat repository lie in a specified geographic
region, query the spatial cache using Metacat's spatial_query action. Metacat can
perform any query supported by the WFS/WMS standards.

 74

An example of a spatial query string is:

http://localhost/knb/metacat?action=spatial_query&xmin=-117.5&xmax=-
64&ymin=3&ymax=46&skin=default

Where xmin, xmax, ymin and ymax represent the western, eastern, southern and
northern bounding coordinates (the "bounding box"), respectively. The spatial query
action returns all documents that overlap or that are contained inside the specified spatial
coordinates. The result set is returned as HTML using the style of the specified skin (in
this example, default).

 75

6 Replication

Metacat has a built-in replication feature that allows different Metacat servers to share
data (both XML documents and data files) between each other. Metacat can replicate not
only its home server's original documents, but also those that were replicated from
partner Metacat servers. When changes are made to one server in a replication network,
the changes are automatically propogated to the network, even if the network is down.

Replication allows users to manage their data locally and (by replicating them to a shared
Metacat repository) to make those data available to the greater scientific community via a
centralized search. In other words, your Metacat can be part of a broader network, but
you retain control over the local repository and how it is managed.

For example, the KNB Network (Figure 6.1), which currently consists of ten different
Metacat servers from around the world, uses replication to "join" the disperate servers to
form a single robust and searchable data repository--facilitating data discovery, while
leaving the data ownership and management with the local administrators.

Figure 6.1: A map of the KNB Metacat network.

When properly configured, Metacat's replication mechanism can be triggered by several
types of events that occur on either the home or partner server: a document insertion, an
update, or an automatic replication (i.e., Delta-T monitoring), which is set at a user-
specified time interval (Table 6.1).

Replication Triggers Description
Insert Whenever a document is inserted into Metacat, the server

notifies each server in its replication list that it has a new
file available.

Update Whenever a document is updated, the server notifies each
server in its replication list of the update.

Delta-T monitoring At a user-specified time interval, Metacat checks each of
the servers in its replication list for updated documents.

Table 6.1: Events that can trigger Metacat's replication mechanism.

 76

6.1 Configuring Replication

To configure replication, you must configure both the home and partner servers:

1) Create a list of partner servers on your home server using the Replication Control
Panel

2) Create certificate files for the home server
3) Create certificate files for the partner server
4) Import partner certificate files to the home server
5) Import home certificate to the partner server
6) Update your Metacat database

Each step is discussed in more detail in the following sections.

6.1.1 Using the Replication Control Panel

To add, remove, or alter servers on your home server's Replication list, or to activate and
customize the Delta-T handler, use the Replication control panel (Figure 6.2), which is
accessed at the following URL:

http://somehost.somelocation.edu/context/style/skins/dev/replControl.ht
ml

"http://somehost.somelocation.edu/context" should be replaced with the name of your
Metacat server and context (e.g., http://knb.ecoinformatics.org/knb/). You must be logged
in to Metacat as an administrator.

Figure 6.2: Replication control panel.

 77

Note that currently, you cannot use the Replication Control Panel to remove a server after
a replication has occurred. At this point in time, the only way to remove a replication
server after replication has occurred is to remove the certificates.

Also note that you must SCP partner certificates to your machine; you cannot use the
"Download Certificate from" option on the Control Panel. For more information about
creating and installing certificates, please see Generating and Exchanging Security
Certificates.

6.1.2 Generating and Exchanging Security Certificates

Before you can take advantage of Metacat's replication feature, you must generate
security certificates on both the replication partner and home servers. The certificates will
be exchanged so that each machine understands that the other has replication access.

The process for generating certificates is different for Metacat servlets running under
Tomcat and those under Tomcat/Apache (the recommended configuration). For
instructions on generating and exchanging certificates on systems running only Tomcat 5
(and Java 6), see Generating a Certificate for Tomcat standalone (no Apache).

Generate Certificates for Metacat running under Apache/Tomcat
Note: Instructions are for Ubuntu/Debian systems.

1) Generate a certificate key using openssl. The key will be named <hostname>-
apache.key, where <hostname> is the name of your Metacat server. Example
values for the individual key fields are included in Table 6.2.

openssl req -new -out REQ.pem -keyout <hostname>-apache.key

Key Field Description and Example Value
Country Name Two letter country code (e.g., US)
State or Province Name

The name of your state or province spelled in full (e.g., California)

Locality Name The name of your city (e.g., Santa Barbara)
Organization Name The company or organization name (e.g., UCSB)
Organizational Unit
Name

The department or section name (e.g., NCEAS)

Common Name The host server name without port numbers (e.g.,
myserver.mydomain.edu)

Email Address Administrator's contact email (e.g., administrator@mydomain.edu)
A challenge password --leave this field blank--
An optional company
name

--leave this field blank--

Table 6.2: Example values for certificate fields.

 78

2) Create the local certificate file by running the command:
openssl req -x509 -days 800 -in REQ.pem -key <hostname>-
apache.key -out <hostname>-apache.crt

Use the same <hostname> you used when you generated the key.

A file named <hostname>-apache.crt will be created in the directory from
which you ran the openssl command. Note: You can name the certificate file
anything you'd like, but keep in mind that the file will be sent to the partner
machine used for replication. The certificate name should have enough meaning
that someone who sees it on that machine can figure out where it came from.

3) Enter the certificate into Apache's security configuration. You must register the

certificate in the local Apache instance. Note that the security files may be in a
different directory from the one used in the instructions depending on how you
installed Apache.

Copy the certificate and key file using the following commands
sudo cp <hostname>-apache.crt /etc/ssl/certs
sudo cp <hostname>-apache.key /etc/ssl/private

4) Apache needs to know about Metacat SSL. The helper file named "knb-ssl" has

rules that tell Apache which traffic to route to the Metacat SSL port. Set up SSL
by dropping the knb-ssl file into the sites-available directory and running
a2ensite to enable the site:

sudo cp <metacat_helper_dir>/knb-ssl <apache_install_dir>/sites-
available
sudo a2ensite knb-ssl

5) Restart Apache to bring in changes by typing:

sudo /etc/init.d/apache2 restart

6) SCP <hostname>-apache.crt to the replication partner machine.

 79

Generating a Certificate for Tomcat standalone (no Apache)

If you are running Metacat under Tomcat (no Apache), generate keys in the Java default key
store. The generated key is placed into the binary certificate's file located at /etc/java-
1.5.0-sun/security/cacerts.

1) Generate the key by running the command. Note that you must be logged in as the root
user to use the keytool:
keytool -genkey -alias <aliasname> -keyalg RSA -
validity 800 -keystore /etc/java-1.6.0-
sun/security/cacerts

<aliasname> is a unique name that you choose for this key. Something like
"<hostname-tomcat>" might be appropriate, where <hostname-tomcat> is the name of
the Metacat host.

2) The Password-keytool will ask for a password. If writing to a pre-existing keystore, you

must know the password. If you are creating a new keystore, the password you enter
will become the keystore password.

Sample values when creating certificate:
What is your first and last name? myserver.nceas.ucsb.edu (note: use the host name
without port number)
What is the name of your organizional unit? NCEAS
What is the name of your organizional unit? UCSB
What is the name of your City or Locality? Santa Barbara
What is the name of your State or Province? California (note: this is spelled in full)
What is the two-letter country code for this unit? US

3) Create a certificate by running the command:

keytool -export -alias <aliasname> -file
<outputfile>.cert -keystore /etc/java-1.6.0-
sun/security/cacerts
<aliasname> is the same name you used when you created the key file.

A file named <outputfile>.cert will be created in the directory from which you ran the
keytool command. You can name the output file anything you like, but keep in mind
that it will be sent to the partner machine used for replication. The filename should have
enough meaning that someone who sees it on that machine can figure out where it came
from. Again, something like "<hostname>-tomcat.cert" will suffice.

4) Edit the Tomcat server file at $TOMCAT_HOME/conf/server.xml to enable SSL

in Tomcat.
a. Uncomment the section that starts with

"<Connector port="8443" ...
(Note: Databased Information comments start with <!-- and end with -->).

b. Add two attribute to that section:
keystoreFile="/etc/java-1.6.0-sun/security/cacerts"
keystorePass="<keystore_password>"

where <keystore_password> is the password you used when you created
or accessed the keystore.

5) SCP the certificate to the partner server.

 80

After you have created and SCP'd a certificate file to each replication partner, and
received a certificate file from each partner in return, both home and partner servers must
import the respective partner certificates.

To import a certificate:

1) Log in as a root user (the keytool must run as a root user)

sudo su –

2) Import the remote certificate by running:

keytool -import -alias <remotehostalias> -file <remotehostfilename>.crt
-keystore /etc/java-1.6.0-sun/security/cacerts

where the <remotehostfilename> is the name of the certificate file created on
the remote partner machine and SCP'd to the home machine. The
<remotehostalias> is the name the certificate will use in the keystore. The
name should identify the remote host.

6.1.3 Update your Metacat database

The simplest way to update the Metacat database to use replication is to use the
Replication Control Panel (Figure 6.3). You can also update the database using SQL.
Instructions for both options are included in this section.

Figure 6.3: Using the Replication Control Panel to update the Metacat database.

To update your Metacat database to use replication, select the "Add this server" radio
button from the Replication Control Panel, enter the partner server name, and specify
how the replication should occur (whether to replicate xml, data, or use the local machine
as a hub). Note that you cannot download certificates using this interface.
To update the database using SQL:

 81

1) Log in to the database

psql -U metacat -W -h localhost metacat

2) Select all rows from the replication table

select * from xml_replication;

3) Insert the partner server.

INSERT INTO xml_replication
(server,last_checked,replicate,datareplicate,hub) VALUES
('<partner.server/context>/servlet/replication',NULL,1,1,0);

Where <partner.server/context> is the name of the partner server and
context. The values 'NULL, 1,1,0' indicate (respectively) the last time replication
occurred, that XML docs should be replicated to the partner server, that data files
should be replicated to the partner server, and that the local server should not act
as a hub. Set a value of 'NULL,0,0,0' is your Metacat is only receiving documents
from the partner site and not replicating to that site.

4) Exit the database

5) Restart Apache and Tomcat on both home and partner replication machines

 82

7 Harvester and Harvest List Editor

Metacat's Harvester is an optional feature that can be used to automatically retrieve EML
documents from one or more custom data management system (e.g., SRB or
PostgreSQL) and to insert (or update) those documents to the home repository. The local
sites control when they are harvested, and which documents are harvested.

For example, the Long Term Ecological Research Network (LTER) uses the Metacat
Harvester to create a centralized repository of data stored on twenty-six different sites
that store EML metadata, but that use different data management systems. Once the data
have been harvested and placed into a centralized repository, they are replicated to the
KNB network, exposing the information to an even larger scientific community.

Once the Harvester is properly configured, listed documents are retrieved and uploaded
on a regularly scheduled basis. You must configure both the home Metacat and the
remote sites (aka the "harvest sites") before using this feature. Local sites must also
provide the Metacat server with a list of documents that should be harvested.

7.1 Configuring Harvester

Before you can use the Harvester to retrieve documents, you must configure the feature
using the settings in the metacat.properties file. Note that you must also configure each
site that the Harvester will connect to and retrieve documents from (see section 7.2 for
details).

The Harvester configuration information is managed in the metacat.properties file, which
is located at:

 <CONTEXT_DIR>/WEB_INF/metacat.properties

The Harvester properties are grouped together and begin after the comment line:

 # Harvester properties

To configure Harvester, edit the metacat.properties and set appropriate values for the
harvesterAdministrator and smtpServer property. You may also wish to customize
the other Harvester paramaters, each discussed in Table 7.1.

 83

Harvester Properties and their Functions
Property Description and Values
connectToMetacat Determine whether Harvester should connect to Metacat to upload

retrieved documents. Set to true (the default) under most
circumstances. To test whether Harvester can retrieve documents from
a site without actually connecting to Metacat to upload the documents,
set the value to false.

Values: true/false

delay The number of hours that Harvester will wait before beginning its first
harvest. For example, if Harvester is run at 1:00 p.m., and the delay is
set to 12, Harvester will begin its first harvest at 1:00 a.m.

Default: 0

harvesterAdministrator The email address of the Harvester Administrator. Harvester will send
email reports to this address after every harvest. Enter multiple email
addresses by separating each address with a comma or semicolon (e.g.,
name1@abc.edu,name2@abc.edu).

Values: An email address, or multiple email addresses separated by
commas or semi-colons

logPeriod The number of days to retain Harvester log entries. Harvester log
entries record information such as which documents were harvested,
from which sites, and whether any errors were encountered during the
harvest. Log entries older than logPeriod number of days are
purged from the database at the end of each harvest.

Default: 90

maxHarvests The maximum number of harvests that Harvester should execute
before shutting down. If the value of maxHarvests is set to 0 or a
negative number, Harvester will execute indefinitely.

Default: 0

period The number of hours between harvests. Harvester will run a new
harvest every specified period of hours (either indefinitely or until the
maximum number of harvests have run, depending on the value of
maxHarvests).

Default: 24

smtpServer The SMTP server that Harvester uses for sending email messages to
the Harvester Administrator and Site Contacts.
(e.g., somehost.institution.edu). Note that the default value only works
if the Harvester host machine is configured as a SMTP server.

Default: localhost

Harvester Operation
Properties
(GetDocError,
GetDocSuccess, etc.)

The Harvester Operation properties are used by Harvester to report
information about performed operations for inclusion in log entries and
email messages. Under most circumstances the values of these
properties should not be modified.

Table 7.1: Harvester Properties found in the metacat.properties file.

 84

7.2 Configuring a Harvest Site (Instructions for Site Contact)

After Metacat's Harvester has been configured, remote sites can register and send
information about which files should be retrieved. Each remote site must have a site
contact who is responsible for registering the site and creating a list of EML files to
harvest (the "Harvest List"), as well as for reviewing harvest reports. The site contact can
unregister the site from the Harvester at any time.

To use Harvester:

1) Register with Harvester
2) Compose a Harvest List (you will likely wish to use the Harvest List Editor)
3) Prepare your EML Documents for Harvest
4) Review the Harvester Reports

7.2.1 Register with Harvester

To register a remote site with Harvester, the Site Contact should log in to Metacat's
Harvester Registration page and enter information about the site and how it should be
harvested.

1) Using a Web browser, log in to Metacat's Harvester Registration page (Figure
7.1). The Harvester Registration page is inside the skins directory. For example, if
the Metacat server that you wish to register with resides at the following URL:

 http://somehost.somelocation.edu:8080/knb/index.jsp

then the Harvester Registration page would be accessed at:

http://somehost.somelocation.edu:8080/knb/style/skins/knb/harvesterRegist
rationLogin.jsp

Figure 7.1: Metacat's Harvester Registration page.

 85

2) Enter your Metacat account information and click Submit to log in to your
Metacat from the Harvester Registration page.

Note: In some cases, you may need to log in to an anonymous "site" account
rather than your personal account so that the registered data will not appear to
have been registered by a single user. For example, an information manager
(jones) who is registering data created by a team of scientists (jones, smith, and
barney) from the Georgia Coastal Ecosystems site might log in to a dedicated
account (named with the site's acronym, "GCE") to indicate that the registered
data is from the entire site rather than "jones".

3) Enter information about your site and how often you want to schedule harvests

and then click the Register button (Figure 7.2). The Harvest List URL should
point to the location of the Harvest List, which is an XML file that lists the
documents to harvest. If you do not yet have a Harvest List, please see Section
7.2.2 for more information about creating one.

Figure 7.2 Enter information about your site and how often you want to schedule harvests.

The example settings in Figure 7.2, instruct Harvester to harvest documents from the site
once every two weeks. The Harvester will access the site's Harvest List at URL
"http://somehost.institution.edu/~myname/harvestList.xml", and will send email reports
to the Site Contact at email address "myname@institution.edu". Note that you can enter
multiple email addresses by separating each address with a comma or a semi-colon. For
example, "myname@institution.edu,anothername@institution.edu".

 86

7.2.2 Compose a Harvest List (The Harvest List Editor)

The Harvest List is an XML file that contains a list of documents to be harvested. The list
is created by the site contact and stored on the site contact's site at the location specified
during the Harvester registration process (see Section 7.2.1 for details). The list can be
generated by hand, or you can use Metacat's Harvest List Editor to automatically generate
and structure the list to conform to the required XML schema (displayed in Figure 7.6 at
the end of this section). In this section we will look at what information is required when
building a Harvest List, and how to configure and use the Harvest List Editor. Note that
you must have a source distribution of Metacat in order to use the Harvest List Editor.

The Harvest List contains information that helps Metacat identify and retrieve each
specified EML file. Each document in the list must be described with a docid,
documentType, and documentURL (Table 7.2).

Item Description
docid The docid uniquely identifies each EML document. Each docid

consists of three elements:

scope The document group to which the document belongs
identifie
r

A number that uniquely identifies the document within the
scope.

revision Anumber that indicates the current revision.

For example, a valid docid could be: demoDocument.1.5, where
demoDocument represents the scope, 1 the identifier, and 5 the revision
number.

documentType The documentType identifies the type of document as EML
e.g., "eml://ecoinformatics.org/eml-2.0.0".

documentURL The documentURL specifies a place where Harvester can locate and
retrieve the document via HTTP. The Metacat Harvester must be given
read access to the contents at this URL.
e.g. "http://www.lternet.edu/~dcosta/document1.xml".

Table 7.2: Information that must be included in the Harvest List about each EML file

The example Harvest List in Figure 7.3 contains two <document> elements that specify
the information that Harvester needs to retrieve a pair of EML documents and upload
them to Metacat.

 87

Example Harvest List

<?xml version="1.0" encoding="UTF-8" ?>
<hrv:harvestList xmlns:hrv="eml://ecoinformatics.org/harvestList" >
 <document>
 <docid>
 <scope>demoDocument</scope>
 <identifier>1</identifier>
 <revision>5</revision>
 </docid>
 <documentType>eml://ecoinformatics.org/eml-2.0.0</documentType>
 <documentURL>http://www.lternet.edu/~dcosta/document1.xml</documentURL>
 </document>
 <document>
 <docid>
 <scope>demoDocument</scope>
 <identifier>2</identifier>
 <revision>1</revision>
 </docid>
 <documentType>eml://ecoinformatics.org/eml-2.0.0</documentType>
 <documentURL>http://www.lternet.edu/~dcosta/document2.xml</documentURL>
 </document>
</hrv:harvestList>
Figure 7.3: Example of a valid Harvest List

Rather than formatting the list by hand, you may wish to use Metacat's Harvest List
Editor to compose and edit it. The Harvest List Editor displays a Harvest List as a table of
rows and fields (Figure 7.4). Each table row corresponds to a single <document> element
in the corresponding Harvest List file (i.e., one EML document). The row numbers are
used only for visual reference and are not editable.

Screenshot of Harvest List Editor
Figure 7.4: The Harvest List Editor

To add a new document to the Harvest List, enter values for all five editable fields (all
fields except the "Row #" field). Partially filled-in rows will cause errors that will result
in an invalid Harvest List.

The buttons at the bottom of the Editor can be used to Cut, Copy, and Paste rows from
one location to another. Select a row and click the desired button, or paste the default
values (which are specified in the Editor's configuration file, discussed later in this
section) into the currently selected row by clicking the Paste Defaults button. Note: Only
one row can be selected at any given time: all cut, copy, and paste operations work on
only a single row rather than on a range of rows.

To run the Harvest List Editor, from the terminal on which the Metacat source code is
installed:

1) Open a system command window or terminal window.

2) Set the METACAT_HOME environment variable to the value of the Metacat

installation directory. Some examples follow:

 88

On Windows:

set METACAT_HOME=C:\somePath\knb

On Linux/Unix (bash shell):

export METACAT_HOME=/home/somePath/metacat

3) cd to the following directory:

On Windows:

cd %METACAT_HOME%\lib\harvester

On Linux/Unix:

cd $METACAT_HOME/lib/harvester

4) Run the appropriate Harvester shell script, as determined by the operating system:

On Windows:

runHarvestListEditor.bat

On Linux/Unix:

sh runHarvestListEditor.sh

The Harvest List Editor will open.

If you would like to customize the Harvest List Editor (e.g., specify a default list to open
automatically whenever the editor is opened and/or default values), create a file called
.harvestListEditor (note the leading dot character). Use a plain text editor to create
the file and place the file in the Site Contact's home directory. To determine the home
directory, open a system command window or terminal window and type the following:

On Windows:

echo %USERPROFILE%

On Linux/Unix:
 echo $HOME

 89

The configuration file contains a number of optional properties that can make using the
Editor more convenient. A sample configure file is displayed in Figure 7.5, and more
information about each configuration property is contained in Table 7.3.

A sample .harvestListEditor configuration file

defaultHarvestList=C:/temp/harvestList.xml
defaultScope=demo_document
defaultIdentifier=1
defaultRevision=1
defaultDocumentURL=http://www.lternet.edu/~dcosta/
defaultDocumentType=eml://ecoinformatics.org/eml-2.0.0

Figure7.5: A sample .harvestListEditor configuration file.

 Harvest List Editor Configuration Properties
Property Description
defaultHarvestList The location of a Harvest List file that the Editor will automatically open

for editing on startup. Set this property to the path to the Harvest List file
that you expect to edit most frequently.

Examples:
/home/jdoe/public_html/harvestList.xml
C:/temp/harvestList.xml

defaultScope The value pasted into the Editor's Scope field when the Paste Defaults
button is clicked. The Scope field should contain a symbolic identifier
that indicates the family of documents to which the EML document
belongs.

Example: xyz_dataset
Default: dataset

defaultIdentifer The value pasted into the Editor's Identifier field when the Paste Defaults
button is clicked. The Scope field should contain a numeric value
indicating the identifier for this particular EML document within the
Scope.

defaultRevision The value pasted into the Editor's Revision field when the Paste Defaults
button is clicked. The Scope field should contain a numeric value
indicating the revision number of this EML document within the Scope
and Identifier.

Example: 2
Default: 1

defaultDocumentType The document type specification pasted into the Editor's DocumentType
field when the Paste Defaults button is clicked.

Default:
eml://ecoinformatics.org/eml-2.0.0

defaultDocumentURL The URL or partial URL pasted into the Editor's URL field when the
Paste Defaults button is clicked. Typically, this value is set to the portion
of the URL shared by all harvested EML documents.

Example:
http://somehost.institution.edu/somepath/
Default: http://

Table 7.3: The configurable properties of the Metacat Harvester.

 90

XML Schema for Harvest Lists

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Matt Jones
(NCEAS) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:hrv="eml://ecoinformatics.org/harvestList"
xmlns="eml://ecoinformatics.org/harvestList"
targetNamespace="eml://ecoinformatics.org/harvestList"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <xs:annotation>
 <xs:documentation>This module defines the required information for the
harvester to collect documents from the local site. The local system containing
this document must give the Metacat Harvester read access to this
document.</xs:documentation>
 </xs:annotation>
 <xs:annotation>
 <xs:appinfo>
 <tooltip/>
 <summary/>
 <description/>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name="harvestList">
 <xs:annotation>
 <xs:documentation>This represents the local document information that is
used to inform the Harvester of the docid, document type, and location of the
document to be harvested.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="document" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="docid">
 <xs:annotation>
 <xs:documentation>The complete document identifier to be used
by metacat. The docid is a compound element that gives a scope for the
identifier, an integer local identifer that is unique within that scope, and a
revision. Each revision is assumed to specify a unique, non-changing document,
so once a particular revision is harvested, there is no need for it to be
harvested again. To trigger a harvest of a document that has been updated,
increment the revision number for that identifier.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="scope" type="xs:string">
 <xs:annotation>
 <xs:documentation>The system prefix of a metacat docid
that defines the scope within which the identifier is
unique.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="identifier" type="xs:long">
 <xs:annotation>
 <xs:documentation>The local (site specific) portion of
the identifier (docid) that is unique within the context of the
scope.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="revision" type="xs:long">
 <xs:annotation>

 91

 <xs:documentation>The revision identifier for this
document, indicating a unique document version.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="documentType" type="xs:string">
 <xs:annotation>
 <xs:documentation>The type of document to be harvested,
indicated by a namespace string, formal public identifier, mime type, or other
type indicator. </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="documentURL" type="xs:anyURI">
 <xs:annotation>
 <xs:documentation>The documentURL field contains the URL of
the document to be harvested. The Metacat Harvester must be given read access
to the contents at this URL.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 7.6: XML Schema to which all Harvest Lists must conform. Access this file at:
/lib/harvester/harvestList.xsd

7.2.3 Prepare EML Documents for Harvest

To prepare a set of EML documents for harvest, ensure that the following is true for each
document:

• The document contains valid EML
• The document is specified in a <document> element in the site's Harvest List (See

section 7.2.2)
• The file resides at the location specified by its URL in the Harvest List

7.2.4 Review Harvester Reports

Harvester sends an email report to the Site Contact after every scheduled site harvest. The
report contains information about the performed operations, such as which EML
documents were harvested and whether any errors were encountered. Errors are indicated
by operations that display a status value of 1; a status value of 0 indicates that the
operation completed successfully.

When errors are reported, the Site Contact should try to determine whether the source of
the error is something that can be corrected at the site. Common causes of errors include:

 92

• a document URL specified in the Harvest List does not match the location of the

actual EML file on the disk
• the Harvest List does not contain valid XML as specified in the harvestList.xsd

schema
• the URL to the Harvest List (specified during registration) does not match the

actual location of the Harvest List on the disk
• an EML document that Harvester attempted to upload to Metacat does not contain

valid EML

If the Site Contact is unable to determine the cause of the error and its resolution, he or
she should contact the Harvester Administrator for assistance.

7.2.5 Unregister with Harvester

To discontinue harvests, the Site Contact must unregister with Harvester. To unregister:

1) Using a Web browser, log in to Metacat's Harvester Registration page. The
Harvester Registration page is inside the skins directory. For example, if the
Metacat server that you wish to register with resides at the following URL:

 http://somehost.somelocation.edu:8080/knb/index.jsp

then the Harvester Registration page would be accessed at:

http://somehost.somelocation.edu:8080/knb/style/skins/knb/harvesterRegist
rationLogin.html

2) Enter and submit your Metacat account information. On the subsequent screen,

click Unregister to remove your site and discontinue harvests.

7.3 Running Harvester

The Harvester can be run as a servlet or in a command window. Under most
circumstances, Harvester is best run continuously as a background servlet process.
However, if you expect to use Harvester infrequently, or if wish only to test that
Harvester is functioning, it may desirable to run it from a command window.

7.3.1 Running Harvester as a Servlet

To run Harvester as a servlet (from a source code installation):

1) Remove the comment symbols around the HarvesterServlet entry (Figure 7.8)
in the source code. The HarvesterServlet entry is located in the
lib/web.xml.tomcatN file, where tomcatN corresponds to the version of Tomcat

 93

you are running. For example, if you are running Tomcat 5, edit file
lib/web.xml.tomcat5.

 <!--
 <servlet>
 <servlet-name>HarvesterServlet</servlet-name>
 <servlet-
class>edu.ucsb.nceas.metacat.harvesterClient.HarvesterServlet</s
ervlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>1</param-value>
 </init-param>
 <init-param>
 <param-name>listings</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 -->

Figure7.7: Remove the comment symbols (designated in red) from around the
HarvesterServlet entry

2) Save the edited file.
3) Shut down Tomcat.
4) Redeploy Metacat by running the following two Ant commands from the top-

level directory of your Metacat installation:

ant cleanweb
ant install

5) Restart Tomcat. Note that you will have to edit the metacat.properties file to
specify harvester settings.

About thirty seconds after you restart Tomcat, the Harvester servlet will start executing.
The first harvest will occur after the number of hours specified in the metacat.properties
file (See Section 7.1 for information). The servlet will continue running new harvests
until the maximum number of harvests have been completed, or until Tomcat shuts down
(harvest frequency and maximum number of harvests are also set in the Harvester
properties).

7.3.2 Running Harvester in a Command Window

To run Harvester in a Command Window:

1) Open a system command window or terminal window.
2) Set the METACAT_HOME environment variable to the value of the Metacat

installation directory.

 94

On Windows:

set METACAT_HOME=C:\somePath\metacat

On Linux/Unix (bash shell):

export METACAT_HOME=/home/somePath/metacat

5) cd to the following directory:

On Windows:

cd %METACAT_HOME%\lib\harvester

On Linux/Unix:

cd $METACAT_HOME/lib/harvester

6) Run the appropriate Harvester shell script, as determined by the operating system:

On Windows:

runHarvester.bat

On Linux/Unix:

sh runHarvester.sh

The Harvester application will start executing. The first harvest will occur after the
number of hours specified in the metacat.properties file (See Section 7.1 for information).
The servlet will continue running new harvests until the maximum number of harvests
have been completed, or until you interrupt the process by hitting CTRL/C in the
command window (harvest frequency and maximum number of harvests are also set in
the Harvester properties).

7.4 Reviewing Harvest Reports

Harvester sends an email report to the Harvester Administrator after every harvest. The
report contains information about the performed operations, such as which sites were
harvested as well as which EML documents were harvested and whether any errors were

 95

encountered. Errors are indicated by operations that display a status value of 1; a status
value of 0 indicates that the operation completed successfully.

The Harvester Administrator should review the report, paying particularly close attention
to any reported errors and accompanying error messages. When errors are reported at a
particular site, the Harvester Administrator should contact the Site Contact to determine
the source of the error and its resolution. Common causes of errors include:

• a document URL specified in the Harvest List does not match the location of the
actual EML file on the disk

• the Harvest List does not contain valid XML as specified in the harvestList.xsd
schema

• the URL to the Harvest List (specified during registration) does not match the
actual location of the Harvest List on the disk

• an EML document that Harvester attempted to upload to Metacat does not contain
valid EML

Errors that are independent of a particular site may indicate a problem with Harvester
itself, Metacat, or the database connection. Refer to the error message to determine the
source of the error and its resolution.

 96

8 Event Logging

Metacat keeps an internal log of events (such as insertions, updates, deletes, and reads)
that can be accessed with the getlog action. Using the getlog action, event reports can
be output from Metacat in XML format, and/or customized to include only certain events:
events from a particular IP address, user, event type, or that occurred after a specified
start date or before an end date.

The following URL is used to return the basic log—an XML-formatted log of all events
since the log was initiated (Figure 8.1):

http://some.metacat.host/context/metacat?action=getlog

Note that you must be logged in to Metacat using the HTTP interface or you will get an
error message. For more information about logging in, please see Logging In with the
HTTP Interface.

Example of XML Log

<?xml version="1.0"?>
<log>
<logEntry><entryid>44</entryid><ipAddress>34.237.20.142</ipAddress><principal>uid=jones,
o=NCEAS,dc=ecoinformatics,dc=org</principal><docid>esa.2.1</docid><event>insert</event>
<dateLogged>2004-09-08 19:08:18.16</dateLogged></logEntry>
<logEntry><entryid>47</entryid><ipAddress>34.237.20.142</ipAddress><principal>uid=jones,o
=NCEAS,
dc=ecoinformatics,dc=org</principal><docid>esa.3.1</docid><event>insert</event><dateLogge
d>2004-
09-14 19:50:40.61</dateLogged></logEntry>
</log>

Figure 8.1: An example of a Metacat log in XML format.

The basic log can be quite extensive. To subset the report, restrict the matching events
using parameters (Table 8.1). Query parameters can be combined to further restrict the
report.

Parameter Description and Values
ipAddress Restrict the report to this IP Address (repeatable)

principal Restrict the report to this user (repeatable)

docid Restrict the report to this docid (repeatable)

event Restrict the report to this event type (repeatable)

Values: insert, update, delete, read

start Restrict the report to events after this date
Value: YYYY-MM-DD+hh:mm:ss

end Restrict the report to events before this date.
Value: YYYY-MM-DD+hh:mm:ss

Table 8.1: Parameters for the getlog action.

 97

To view only the 'read' events, use a URL like:

http://some.metacat.host/context/metacat?action=getlog&event=read

To view only the events for a particular IP address, use a URL like:

http://some.metacat.host/context/metacat?action=getlog&ipaddress=107.9.
1.31

To view only the events for a given user, use a URL like:

http://some.metacat.host/context/metacat?action=getlog&principal=uid=jo
hndoe,o=NCEAS,dc=ecoinformatics,dc=org

To view only the events for a particular document, use a URL like:

http://some.metacat.host/context/metacat?action=getlog&docid=knb.5.1

To view only the events after a given date, use a URL like:

http://some.metacat.host/context/metacat?action=getlog&start=2004-09-
15+12:00:00

To view only the events before a given date, use a URL like:

http://some.metacat.host/context/metacat?action=getlog&end=2004-09-
15+12:00:00

To view the 'insert' events for September 2004 (i.e., to combine parameters) use a URL
like:

http://some.metacat.host/context/metacat?action=getlog&event=insert&sta
rt=2004-09-01+12:00:00&end=2004-09-30+23:59:59

 98

9 Enabling Web Searches: Sitemaps

Sitemaps are XML files that tell search engines—such as Google, which is discussed in
this section--which URLs on your websites are available for crawling. Currently, the only
way for a search engine to crawl and index Metacat so that individual metadata entries
are available via Web searches is with a sitemap. Metacat automatically creates sitemaps
for all public documents in the repository. However, you must register the sitemaps with
the search engine before it will take effect.

9.1 Creating a Sitemap

Metacat automatically generates a sitemap file for all public documents in the repository
on a daily basis. The sitemap file(s) must be available via the Web on your server, and
must be registered with Google before they take effect. For information on the sitemap
protocol, please refer to the Google page on using the sitemap protocol.

You can view Metacat's sitemap files at:

<webapps_dir>/sitemaps

The directory contains one or more XML files named

metacat<X>.xml

where <X> is a number (e.g., 1 or 2) used to increment each sitemap file. Because
Metacat limits the number of sitemap entries in each sitemap file to 25,000, the servlet
creates an additional sitemap file for each group of 25,000 entries.

Verify that your sitemap files are available to the Web by browsing to
<your_web_context>/sitemaps/metacat<X>.xml

(e.g., your.server.org/knb/sitemaps/metacat1.xml)

9.2 Registering a Sitemap

Before Google will begin indexing the public files in your Metacat, you must register the
sitemaps. To register your sitemaps and ensure that they are up to date:

1) Register for a Google Webmaster Tools account, and add your Metacat site to the
Dashboard.

2) From your Google Webmaster Tools site account, register your sitemaps. See the
Google help site for more information about how to register sitemaps. Note:

 99

Register the full URL path to your sitemap files, including the http:// (or https://)
headers.

Once the sitemaps are registered, Google will begin to index the public documents in
your Metacat repository.

NOTE: As you add more publicly accessible data to Metacat, you will need to
periodically revisit the Google Webmaster Tools utility to refresh your sitemap
registration.

10 Creating a Java Class that Implements
AuthInterface

TO COME

11 Appendix: Metacat Properties

The most dynamic Metacat Properties are managed using Metacat's Configuration
Interface. These properties, as well as other, rarely modified ones can be found in the
metacat.properties file. For more information about the properties, click one of the
following:

• Server Properties
• Application Properties
• Database Properties
• Authorization and Authentication Properties
• XML/EML Properties

Server Properties

All of Metacat's server properties are managed with the form-based configuration utility,
though they can also be accessed More information on each is included in Table 10.1.

 100

Metacat Server Properties
Property Description Example
server.name

The network host name used to access
Metacat. Note that this is not necessarily
the physical name of the server running
Metacat. The host name should not
include the protocol prefix (http://).

Default Value: localhost

knb.ecoinformatics.org

server.httpPort

The network port used to access
Metacat for non-secure (standard)
connections. This is usually 80 if
Apache Web server is running, and
8080 if Tomcat is running alone.

Default Value: 80

80

server.httpSSLPort

The network port used to access
Metacat for secure connections. This is
usually 443 if Apache Web server is
running, and 8443 if Tomcat is running
alone.

Default Value: 443

443

Table 11.1: Metacat Server Properties

Application Properties

Metacat's application properties are described in Table 10.2. Properties that can only be
edited manually in the metacat.properties file are highlighted. All others are managed
with the properties configuration utility.

Metacat Application Properties
Property Description Example
application.metacatVers
ion

The Metacat version number. It is set by
the build engineer at build time.
Usually, the value should never be
changed.
Default Value: X.X.X (where X.X.X is
the current version of Metacat)

1.9.0

application.metacatRele
aseInfo

Release information for display
purposes. Typically the property is set
during the release candidate cycle to let
users know which candidate they are
downloading.

Release Candidate 1

application.deployDir

The directory where Web applications
are deployed. Usually, the value is a
directory named "webapps" in the
Tomcat installation directory.

/usr/local/tomcat/webapps

 101

application.context

The name of the Metacat application
directory in the deployment directory.
This corresponds to the first part of the
WAR file name (the part before .war).
Most commonly, this is "knb", but it can
be changed to other things.

knb

application.default-
style

A custom Metacat Web skin usually
associated with an organizational theme.
If your organization has no custom skin,
leave the value as "default".

default

application.knbSiteURL

The main KNB website.

Default Value:
http://knb.ecoinformatics.org

http://knb.ecoinformatics.org

application.datafilepath The directory in which to store data
files. The directory should be outside
the Metacat installation directories so
data files will not be lost when Metacat
is upgraded. The data file directory must
be writable by the user that starts
Tomcat (and thus Metacat).

Default Value: /var/metacat/data

/var/metacat/data

application.inlinedataf
ilepath

The directory where inline data files
will be stored. Inline data files are
created from data that is embedded in
EML metadata. The directory should be
outside the Metacat installation
directories so data files will not be lost
when Metacat is upgraded. For clarity of
data, this should probably not be the
same as application.datafilepath. The
data file directory must be writable by
the user that starts Tomcat (and thus
Metacat).

Default Value: /var/metacat/inline-data

/var/metacat/inline-data

application.documentfil
epath

The directory where metadata files will
be stored. The directory should be
outside the Metacat installation
directories so document files will not be
lost when Metacat is upgraded. For
clarity of organization, this should
probably not be the same as
application.datafilepath or
application.inlinedatafilepath. The data
file directory must be writable by the
user that starts Tomcat (and thus
Metacat).

Default Value: /var/metacat/documents

/var/metacat/documents

 102

application.tempDir

The directory where the Metacat data
registry stores temporary files. The
directory should not be the same as
application.datafilepath or
application.inlinedatafilepath (or any
other persistent file path) because all
files in this may be purged
programmatically. The temporary file
directory must be writable by the user
that starts Apache.

Default Value: /var/metacat/temporary

/var/metacat/temporary

Table 11.2: Metacat Application properties. Highlighted properties can only be set manually in the
metacat.properties file.

Database Properties

Metacat's database properties are described in Table 10.3. Properties that can only be
edited manually in the metacat.properties file are highlighted. All others are managed
with the properties configuration utility.

Metacat Database Properties
Property Description Example
database.connectionURI

The JDBC connection URI for the main
database instance of Metacat. The URI
is formatted like:

jdbc:<database_type>:thin@<your_server_n
ame>:1521:<metacat_database_name>

NOTE: You must create an empty
database prior to initial Metacat
configuration.

Default Value:
jdbc:postgresql://localhost/metacat

jdbc:postgresql://yourserver.
yourdomain.edu/metacat

database.user

The user for the main database instance
of Metacat. The user must have already
been created on the database.

metacat-user

database.password

The password of the user for the main
database instance of Metacat. The
password must have already been
created for the user.

securepassword4843

database.type

The type of database you are running.
Currently, there are two supported
types, Oracle and Postgres.

postgres

database.driver The JDBC driver to be used to access
the main database instance of Metacat.
There is one driver associated with each
type of database.

org.postgresql.Driver

 103

database.adapter

The adapter class that allows Metacat to
access your database type. There is one
adapter associated with each type of
database.

edu.ucsb.nceas.dbadapter.Po
stgresqlAdapter

database.scriptsuffix.
<database_type>

The script suffix tells the system which
database scripts to run (postgres or
oracle) when installing or updating
database schema.

Default Values:
database.scriptsuffix.postgres=postgres.
sql
database.scriptsuffix.oracle=oracle.sql

postgres.sql

database.upgradeVersion
.<database_version>

Which database scripts to run when
updating database schema. There is a
database.upgradeVersion entry for every
Metacat database schema version. Each
schema version corresponds to an
application version.

Default Values:

database.upgradeVersion.0.0.0=xmltabl
es,loaddtdschema

database.upgradeVersion.1.2.0=upgrade
-db-to-1.2

database.upgradeVersion.1.3.0=upgrade
-db-to-1.3

database.upgradeVersion.1.4.0=upgrade
-db-to-1.4

database.upgradeVersion.1.5.0=upgrade
-db-to-1.5

database.upgradeVersion.1.6.0=upgrade
-db-to-1.6

database.upgradeVersion.1.7.0=upgrade
-db-to-1.7

database.upgradeVersion.1.8.0=upgrade
-db-to-1.8

database.upgradeVersion.1.9.0=upgrade
-db-to-1.9

upgrade-db-to-1.2

database.initialConnect
ions

The number of initial connection that
Metacat creates to the database.

Default Value: 5

5

 104

database.incrementConne
ctions

The number of connections Metacat
creates when it requires more
connections.

Default Value: 5

5

database.maximumConnect
ions

The maximum number of database
connections Metacat can make.

Default Value: 200

25

database.maximumConnect
ionAge

The maximum time in milliseconds that
a database connection can live.

Default Value: 120000

120000

database.maximumConnect
ionTime

The maximum time in milliseconds that
a database connection can accumulate in
actual connection time.

Default Value: 60000

60000

database.maximumUsageNu
mber

The maximum number of times a single
connection can be used.

Default Value: 100

100

database.numberOfIndexi
ngThreads

The number of threads available for
indexing.

Default Value: 5

5

database.indexingTimerT
askTime

The time in milliseconds between
indexing.

Default Value: 604800000

604800000

database.indexingInitia
lDelay

The delay in milliseconds before first
indexing is executed.

Default Value: 3600000

3600000

database.maximumIndexDe
lay

The time in milliseconds that an
indexing thread will wait when it can't
get a doc id before retrying the
indexing.

Default Value: 5000

5000

database.runDBConnectio
nRecycleThread

Determines whether the database
connection pool should run a thread to
recycle connections. Possible values are
"on" and "off"

Default Value: off

off

 105

database.cycleTimeOfDBC
onnection

The time in milliseconds between
connection recycling runs.

Default Value: 30000

30000

database.queryignoredpa
rams

Parameters to ignore in a structured
XML query.

Default Value: enableediting,foo

enableediting

database.usexmlindex Determines whether to use XML
indexes when finding documents.
Possible values are true and false.

Default Value: true

true

database.appResultsetSi
ze

Determines the number of results that
can be returned to an application from a
query.

Default Value: 7000

7000

database.webResultsetSi
ze

Determines the number of results that
can be returned to a Web browser from
a query.

Default Value: 7000

7000

database.xmlReturnfield
Count

If the query results of a query are
returned more times than this value,
then those results will be inserted into
the xml_queryresult table in the
database. For example, if you want
results for
a query to be stored in xml_queryresult
only when it has been requested 50
times, set this value to 50.

Default Value: 0

0

database.queryresultStr
ingLength

The max size of the query result string
in the queryresult table. This should be
set to some number less than 4000 if an
Oracle database is being used.
Default Value: 500000

500000

database.queryresultCac
heSize

The number of query results that will be
cached.

Default Value: 500

500

database.queryCacheOn

Determines whether query caching is
turned on. Possible values are "on" and
"off"

Default Value: on

on

Table 11.3: Metacat Database properties. Highlighted properties can only be set manually in the
metacat.properties file.

 106

Authorization and Authentication Properties

Metacat's authorization and authentication properties are described in Table 10.4.
Properties that can only be edited manually in the metacat.properties file are
highlighted. All others are managed with the properties configuration utility.

Authorization and Authentication Properties
Property Description Example
auth.class

The class used for user authentication.
Currently, only the AuthLdap class is
included in the Metacat distribution.

Note: If you implement another
authentication strategy by implementing
a Java class that extends the
AuthInterface interface and rebuilding
Metacat, change this property to the
fully qualified class name of your
custom authentication mechanism.

Default Value:
edu.ucsb.nceas.metacat.AuthLdap

edu.ucsb.nceas.metacat.Aut
hLdap

auth.timeoutMinutes

The number of minutes that a user will
stay logged in to Metacat without any
activity.

Default Value: 180

180

auth.administrators

A colon separated list of LDAP users or
groups that have administrative Metacat
privileges. At least one user or group
must be entered when Metacat is first
installed and configured. All accounts
must exist in LDAP in order to continue
with the configuration.

Example:
uid=youruser,o=NCEAS,dc
=ecoinformatics,dc=org

cn=yourgroup,o=NCEAS,dc
=ecoinformatics,dc=org

auth.url

The URL of the server that Metacat
should use for authentication.

Default Value:
ldap://ldap.ecoinformatics.org:389/

ldap://ldap.ecoinformatics.or
g:389/

auth.surl

The URL of the server that Metacat
should use for secure authentication.

Default Value:
ldap://ldap.ecoinformatics.org:389/

ldap://ldap.ecoinformatics.or
g:389/

 107

auth.base

The base part of the distinguished name
that Metacat uses for authentication.

Default Value:
dc=ecoinformatics,dc=org

dc=ecoinformatics,dc=org

auth.allowedSubmitters

A colon delimited list of users who
should be allowed to submit documents
to Metacat. If no value is specified, all
users will be allowed to submit
documents.

Default Value: (none)

uid=youruser,o=NCEAS,dc
=ecoinformatics,dc=org

auth.deniedSubmitters

A colon delimited list of users who
should not be allowed to submit
documents. If no value is specified, all
users will be allowed to submit
documents.

Default Value: (none)

uid=youruser,o=NCEAS,dc
=ecoinformatics,dc=org

ldap.connectTimeLimit

The time in milliseconds allowed for
LDAP server connections.

Default Value: 5000

5000

ldap.searchTimeLimit

The time in milliseconds allowed for
LDAP server searches.

Default Value: 30000

3000

ldap.searchCountLimit

The number of return entries allowed
for LDAP server searches.

Default Value: 30000

30000

ldap.referral The type of LDAP referrals to use.
Possible values are "follow", "throw" or
"none". Refer to LDAP documentation
for further information.

Default Value: follow

follow

ldap.onlySecureConnecti
on

Determines whether to use only a secure
LDAP server. Acceptable values are
"true" and "false".

Default Value: false

false

ldap.onlySecureReferals
Connection

Determines whether to only use a secure
referral server. Acceptable values are
"true" and "false".

Default Value: false

false

Table 11.4: Authentication properties. Highlighted properties can only be set manually in the
metacat.properties file.

 108

XML/EML Properties

Metacat's XML/EML properties are described in Table 10.5. Properties that can only be
edited manually in the metacat.properties file are highlighted.

XML/EML Properties
Property Description Example
xml.saxparser

The SAX parser used to parse XML
documents. Metacat requires a SAX2-
compatible XML parser.

Default Value:
org.apache.xerces.parsers.SAXParser

org.apache.xerces.parsers.S
AXParser

xml.eml2_0_0namespace

The namespace of EML 2.0.0
documents.

Default Value:
eml://ecoinformatics.org/eml-2.0.0

eml://ecoinformatics.org/em
l-2.0.0

xml.eml2_0_1namespace

The namespace of EML 2.0.1
documents.

Default Value:
eml://ecoinformatics.org/eml-2.0.1

eml://ecoinformatics.org/em
l-2.0.1

xml.eml2_1_0namespace

The namespace of EML 2.1.0
documents.

Default Value:
eml://ecoinformatics.org/eml-2.1.0

eml://ecoinformatics.org/em
l-2.1.0

xml.packagedoctype

The doctype of a package file. The
system will only recognize documents
of this type as package files. See:
package documentation.

Default Value: -//ecoinformatics.org//eml-
dataset-2.0.0beta6//EN, -
//ecoinformatics.org//eml-dataset-
2.0.0beta4//EN

-//ecoinformatics.org//eml-
dataset-2.0.0beta6//EN, -
//ecoinformatics.org//eml-
dataset-2.0.0beta4//EN

xml.accessdoctype The doctype of an access control list
(ACL) file. The system will only
recognize documents of this type as
access files. See: access control
documentation.

Default Value: -//ecoinformatics.org//eml-
access-2.0.0beta6//EN, -
//ecoinformatics.org//eml-access-
2.0.0beta4//EN

-//ecoinformatics.org//eml-
access-2.0.0beta6//EN, -
//ecoinformatics.org//eml-
access-2.0.0beta4//EN

Table 11.5: XML/EML Properties. Highlighted properties can only be set manually in the
metacat.properties file.

