Feature #6381 ยป Metric_Community_Stability.R
1 |
#####################
|
---|---|
2 |
##Community stability
|
3 |
#data format: long
|
4 |
#summing cover values by treatment then by species
|
5 |
require(plyr) |
6 |
|
7 |
cs.sum <- ddply(data_raw.long, .(treatment, species). summarise, |
8 |
sum=sum(cover)) |
9 |
|
10 |
#calculating the mean sum and sd for each treatment
|
11 |
cs.sum.mean <- ddply(cs.sum, .(treatment), summarise, |
12 |
sumMean=mean(sum)) |
13 |
cs.sum.sd <- ddply(cs.sum, .(treatment), summarise, |
14 |
sumSd=sd(sum)) |
15 |
cs.m.sd <- join(cs.sum.mean, cs.sum.sd, type="full") |
16 |
|
17 |
#calculating final comm. stability value per treatment
|
18 |
cs_final <- ddply(cs.m.sd, .(treatment), summarise, |
19 |
cs=mean/sd) |
20 |
|
21 |
#ANOVA on cs values
|
22 |
require(car) |
23 |
|
24 |
lm.cs.sum <- lm(sum ~ treatment, data=cs.sum) |
25 |
Anova(lm.cs.sum, type=3) |
26 |
summary(lm.cs.sum) |
27 |
|
28 |
#KW ANOVA
|
29 |
fit.cs.kw <- kruskal.test(sum ~ treatment, data=sc.sum) |