Feature #6382 ยป Metric_Population_Stability.R
1 |
######################
|
---|---|
2 |
##Population stability
|
3 |
#data format: long
|
4 |
#summing cover values by plot then by species
|
5 |
require(plyr) |
6 |
|
7 |
ps.sum <- ddply(data_raw.long, .(plot, species), summarise, |
8 |
sum=sum(cover)) |
9 |
|
10 |
#calculating the mean sum and sd for each treatment
|
11 |
ps.sum.mean <- ddply(ps.sum, .(plot), summarise, |
12 |
mean=mean(sum)) |
13 |
ps.sum.sd <- ddply(ps.sum, .(plot), summarise, |
14 |
sd=sd(sum)) |
15 |
ps.m.sd <- join(ps.sum.mean, ps.sum.sd, type="full") |
16 |
|
17 |
#calculating final comm. stability value per plot
|
18 |
ps.plot_final <- ddply(ps.m.sd, .(plot), summarise, |
19 |
ps=mean/sd) |
20 |
#calculating final comm. stability value per treatment (must create trt column for ps.plot_final)
|
21 |
ps.trt_final <- ddly(ps.plot_final, .(treatment), summarise, |
22 |
mean=mean(ps)) |
23 |
|
24 |
#ANOVA on ps.sum values (must create trt column for ps.sum)
|
25 |
require(car) |
26 |
|
27 |
lm.ps.sum <- lm(sum ~ treatment, data=ps.sum) |
28 |
Anova(lm.ps.sum, type=3) |
29 |
summary(lm.ps.sum) |
30 |
|
31 |
#KW ANOVA
|
32 |
fit.ps.kw <- kruskal.test(sum ~ treatment, data=pc.sum) |